Files
z80/ay-3-8912.cpp

224 lines
7.5 KiB
C++

#include "ay-3-8912.h"
#include "z80.h"
#include <SDL2/SDL.h>
#define MIXER_REG_A_TONE 0x01
#define MIXER_REG_B_TONE 0x02
#define MIXER_REG_C_TONE 0x04
#define MIXER_REG_A_NOISE 0x08
#define MIXER_REG_B_NOISE 0x10
#define MIXER_REG_C_NOISE 0x20
#define MIXER_REG_PORT_A 0x40
#define MIXER_REG_PORT_B 0x80
#define ENVELOPE_HOLD 0x01
#define ENVELOPE_ALTERNATE 0x02
#define ENVELOPE_ATTACK 0x04
#define ENVELOPE_CONTINUE 0x08
namespace audio
{
#define SAMPLING_FREQ 44100
#define AUDIO_BUFFER_SIZE 2048
float cycles_per_sample;
uint8_t volume_table[16] {0,2,3,4,6,8,11,16,23,32,45,64,90,128,180,255};
SDL_AudioDeviceID sdlAudioDevice;
uint8_t selected_register {0};
uint8_t registers[16];
uint16_t channel_a_tone_freq;
uint16_t channel_a_tone_freq_counter;
uint16_t channel_a_tone_level;
uint16_t channel_a_level;
uint16_t channel_b_tone_freq;
uint16_t channel_b_tone_freq_counter;
uint16_t channel_b_tone_level;
uint16_t channel_b_level;
uint16_t channel_c_tone_freq;
uint16_t channel_c_tone_freq_counter;
uint16_t channel_c_tone_level;
uint16_t channel_c_level;
uint8_t noise_freq;
uint8_t noise_freq_counter;
uint8_t noise_level;
uint32_t shiftreg;
uint16_t envelope_freq;
uint16_t envelope_freq_counter;
int8_t envelope_volume;
int8_t envelope_direction;
void select_register(int port, int val)
{
selected_register = val & 0xf;
}
int read_register(int port)
{
return registers[selected_register];
}
void write_register(int port, int val)
{
registers[selected_register] = val;
uint32_t clock = (z80::getClock() >> 5);
switch (selected_register) {
case 0:
case 1: {
uint16_t freq = registers[0] | ((registers[1] & 0xf) << 8);
channel_a_tone_freq = clock / freq;
channel_a_tone_freq_counter = 0;
break;
}
case 2:
case 3: {
uint16_t freq = registers[2] | ((registers[3] & 0xf) << 8);
channel_b_tone_freq = clock / freq;
channel_b_tone_freq_counter = 0;
break;
}
case 4:
case 5: {
uint16_t freq = registers[4] | ((registers[5] & 0xf) << 8);
channel_c_tone_freq = clock / freq;
channel_c_tone_freq_counter = 0;
break;
}
case 6: {
noise_freq = clock / (registers[6] & 0x1f);
noise_freq_counter = 0;
break;
}
case 11:
case 12: {
uint16_t freq = registers[11] | (registers[12] << 8);
envelope_freq = clock / freq;
break;
}
case 13:
if (registers[13]&ENVELOPE_ATTACK) {
envelope_volume = 0;
envelope_direction = 1;
} else {
envelope_volume = 15;
envelope_direction = -1;
}
}
}
void init()
{
SDL_AudioSpec audioSpec{SAMPLING_FREQ, AUDIO_U8, 1, 0, AUDIO_BUFFER_SIZE, 0, 0, NULL, NULL};
sdlAudioDevice = SDL_OpenAudioDevice(NULL, 0, &audioSpec, NULL, 0);
cycles_per_sample = z80::getClock() / SAMPLING_FREQ;
reset();
z80::connect_port(0xfffd, 0xffff, audio::read_register, audio::select_register);
z80::connect_port(0xbffd, 0xffff, nullptr, audio::write_register);
resume();
}
void reset()
{
selected_register = 0;
for (int i=0; i<16;++i) registers[i]=0;
}
void silence()
{
SDL_PauseAudioDevice(sdlAudioDevice, 1);
}
void resume()
{
SDL_PauseAudioDevice(sdlAudioDevice, 0);
}
void update(uint32_t dt)
{
for (int i=0;i<dt;i+=2)
{
// Oscillate (0-1) channel A tone level given its frequency
channel_a_tone_freq_counter++;
if (channel_a_tone_freq_counter == channel_a_tone_freq) {
channel_a_tone_freq_counter = 0;
channel_a_tone_level = channel_a_tone_level ^ 1;
}
// Oscillate (0-1) channel B tone level given its frequency
channel_b_tone_freq_counter++;
if (channel_b_tone_freq_counter == channel_b_tone_freq) {
channel_b_tone_freq_counter = 0;
channel_b_tone_level = channel_b_tone_level ^ 1;
}
// Oscillate (0-1) channel C tone level given its frequency
channel_c_tone_freq_counter++;
if (channel_c_tone_freq_counter == channel_c_tone_freq) {
channel_c_tone_freq_counter = 0;
channel_c_tone_level = channel_c_tone_level ^ 1;
}
// Oscillate (0-1) noise level given its frequency and shift register
noise_freq_counter++;
if (noise_freq_counter == noise_freq) {
noise_freq_counter = 0;
noise_level = noise_level ^ shiftreg;
uint32_t newbit = shiftreg ^ (shiftreg >> 3);
shiftreg = ((shiftreg >> 1) & 0xff) | ((newbit << 16) & 0x100);
}
// Mix tone and noise on channel A given register 7 values
channel_a_level = 1;
if (registers[7] & MIXER_REG_A_TONE) channel_a_level &= channel_a_tone_level;
if (registers[7] & MIXER_REG_A_NOISE) channel_a_level &= noise_level;
// Mix tone and noise on channel B given register 7 values
channel_b_level = 1;
if (registers[7] & MIXER_REG_B_TONE) channel_b_level &= channel_b_tone_level;
if (registers[7] & MIXER_REG_B_NOISE) channel_b_level &= noise_level;
// Mix tone and noise on channel C given register 7 values
channel_c_level = 1;
if (registers[7] & MIXER_REG_C_TONE) channel_c_level &= channel_c_tone_level;
if (registers[7] & MIXER_REG_C_NOISE) channel_c_level &= noise_level;
// Develop (0-15) envelope volume given its frequency and shape
envelope_freq_counter++;
if (envelope_freq_counter == envelope_freq) {
envelope_freq_counter = 0;
envelope_volume += envelope_direction;
if ( (envelope_volume > 15) || (envelope_volume < 0) ) {
switch(registers[13]&0xf) {
case 8:
case 12:
envelope_volume &= 0x0f;
break;
case 10:
case 14:
envelope_direction = -envelope_direction;
envelope_volume += envelope_direction;
case 11:
case 13:
envelope_direction = 0;
envelope_volume = 15;
default:
envelope_direction = 0;
envelope_volume = 0;
}
}
}
uint8_t channel_a_volume = (registers[8]&0x10) ? envelope_volume : registers[8]&0xf;
uint8_t channel_b_volume = (registers[9]&0x10) ? envelope_volume : registers[9]&0xf;
uint8_t channel_c_volume = (registers[10]&0x10) ? envelope_volume : registers[10]&0xf;
}
}
}