#include "text.h" #include // Para Uint8, SDL_GetRenderTarget, SDL_RenderClear, SDL_SetRenderDrawColor, SDL_SetRenderTarget, SDL_FRect, SDL_BLENDMODE_BLEND, SDL_PixelFormat, SDL_TextureAccess #include // Para basic_ifstream, basic_istream, basic_ostream, operator<<, endl, ifstream #include // Para cerr #include // Para istringstream #include // Para runtime_error #include // Para string_view #include "color.h" // Para Color #include "resource_helper.h" // Para ResourceHelper #include "screen.h" // Para Screen #include "sprite.h" // Para Sprite #include "texture.h" // Para Texture #include "utils.h" // Para getFileName, printWithDots // Constructor Text::Text(const std::shared_ptr &texture, const std::string &text_file) { // Carga los offsets desde el fichero auto tf = loadFile(text_file); // Inicializa variables desde la estructura box_height_ = tf->box_height; box_width_ = tf->box_width; for (int i = 0; i < 128; ++i) { offset_[i].x = tf->offset[i].x; offset_[i].y = tf->offset[i].y; offset_[i].w = tf->offset[i].w; } // Crea los objetos sprite_ = std::make_unique(texture, (SDL_FRect){0, 0, static_cast(box_width_), static_cast(box_height_)}); // Inicializa variables fixed_width_ = false; } // Constructor Text::Text(const std::shared_ptr &texture, const std::shared_ptr &text_file) { // Inicializa variables desde la estructura box_height_ = text_file->box_height; box_width_ = text_file->box_width; for (int i = 0; i < 128; ++i) { offset_[i].x = text_file->offset[i].x; offset_[i].y = text_file->offset[i].y; offset_[i].w = text_file->offset[i].w; } // Crea los objetos sprite_ = std::make_unique(texture, (SDL_FRect){0, 0, static_cast(box_width_), static_cast(box_height_)}); // Inicializa variables fixed_width_ = false; } // Constructor con textura blanca opcional Text::Text(const std::shared_ptr &texture, const std::shared_ptr &white_texture, const std::string &text_file) { // Carga los offsets desde el fichero auto tf = loadFile(text_file); // Inicializa variables desde la estructura box_height_ = tf->box_height; box_width_ = tf->box_width; for (int i = 0; i < 128; ++i) { offset_[i].x = tf->offset[i].x; offset_[i].y = tf->offset[i].y; offset_[i].w = tf->offset[i].w; } // Crea los objetos sprite_ = std::make_unique(texture, (SDL_FRect){0, 0, static_cast(box_width_), static_cast(box_height_)}); white_sprite_ = std::make_unique(white_texture, (SDL_FRect){0, 0, static_cast(box_width_), static_cast(box_height_)}); // Inicializa variables fixed_width_ = false; } // Constructor con textura blanca opcional Text::Text(const std::shared_ptr &texture, const std::shared_ptr &white_texture, const std::shared_ptr &text_file) { // Inicializa variables desde la estructura box_height_ = text_file->box_height; box_width_ = text_file->box_width; for (int i = 0; i < 128; ++i) { offset_[i].x = text_file->offset[i].x; offset_[i].y = text_file->offset[i].y; offset_[i].w = text_file->offset[i].w; } // Crea los objetos sprite_ = std::make_unique(texture, (SDL_FRect){0, 0, static_cast(box_width_), static_cast(box_height_)}); white_sprite_ = std::make_unique(white_texture, (SDL_FRect){0, 0, static_cast(box_width_), static_cast(box_height_)}); // Inicializa variables fixed_width_ = false; } // Escribe texto en pantalla void Text::write(int x, int y, const std::string &text, int kerning, int length) { int shift = 0; const std::string_view VISIBLE_TEXT = (length == -1) ? std::string_view(text) : std::string_view(text).substr(0, length); sprite_->setY(y); for (const auto CH : VISIBLE_TEXT) { const auto INDEX = static_cast(CH); if (INDEX < offset_.size()) { sprite_->setSpriteClip(offset_[INDEX].x, offset_[INDEX].y, box_width_, box_height_); sprite_->setX(x + shift); sprite_->render(); shift += offset_[INDEX].w + kerning; } } } // Escribe el texto al doble de tamaño void Text::write2X(int x, int y, const std::string &text, int kerning, int length) { int shift = 0; const std::string_view VISIBLE_TEXT = (length == -1) ? std::string_view(text) : std::string_view(text).substr(0, length); for (const auto CH : VISIBLE_TEXT) { const auto INDEX = static_cast(CH); if (INDEX < offset_.size()) { SDL_FRect rect = { static_cast(offset_[INDEX].x), static_cast(offset_[INDEX].y), static_cast(box_width_), static_cast(box_height_)}; sprite_->getTexture()->render(x + shift, y, &rect, 2.0F, 2.0F); shift += (offset_[INDEX].w + kerning) * 2; } } } // Escribe el texto en una textura auto Text::writeToTexture(const std::string &text, int zoom, int kerning, int length) -> std::shared_ptr { auto *renderer = Screen::get()->getRenderer(); auto texture = std::make_shared(renderer); auto width = Text::length(text, kerning) * zoom; auto height = box_height_ * zoom; auto *temp = SDL_GetRenderTarget(renderer); texture->createBlank(width, height, SDL_PIXELFORMAT_RGBA8888, SDL_TEXTUREACCESS_TARGET); texture->setBlendMode(SDL_BLENDMODE_BLEND); texture->setAsRenderTarget(renderer); SDL_SetRenderDrawColor(renderer, 0, 0, 0, 0); SDL_RenderClear(renderer); zoom == 1 ? write(0, 0, text, kerning) : write2X(0, 0, text, kerning); SDL_SetRenderTarget(renderer, temp); return texture; } // Escribe el texto con extras en una textura auto Text::writeDXToTexture(Uint8 flags, const std::string &text, int kerning, Color text_color, Uint8 shadow_distance, Color shadow_color, int length) -> std::shared_ptr { auto *renderer = Screen::get()->getRenderer(); auto texture = std::make_shared(renderer); // Calcula las dimensiones considerando los efectos auto base_width = Text::length(text, kerning); auto base_height = box_height_; auto width = base_width; auto height = base_height; auto offset_x = 0; auto offset_y = 0; const auto STROKED = ((flags & Text::STROKE) == Text::STROKE); const auto SHADOWED = ((flags & Text::SHADOW) == Text::SHADOW); if (STROKED) { // Para stroke, el texto se expande en todas las direcciones por shadow_distance width = base_width + (shadow_distance * 2); height = base_height + (shadow_distance * 2); offset_x = shadow_distance; offset_y = shadow_distance; } else if (SHADOWED) { // Para shadow, solo se añade espacio a la derecha y abajo width = base_width + shadow_distance; height = base_height + shadow_distance; } auto *temp = SDL_GetRenderTarget(renderer); texture->createBlank(width, height, SDL_PIXELFORMAT_RGBA8888, SDL_TEXTUREACCESS_TARGET); texture->setBlendMode(SDL_BLENDMODE_BLEND); texture->setAsRenderTarget(renderer); SDL_SetRenderDrawColor(renderer, 0, 0, 0, 0); SDL_RenderClear(renderer); writeDX(flags, offset_x, offset_y, text, kerning, text_color, shadow_distance, shadow_color, length); SDL_SetRenderTarget(renderer, temp); return texture; } // Escribe el texto con colores void Text::writeColored(int x, int y, const std::string &text, Color color, int kerning, int length) { writeColoredWithSprite(sprite_.get(), x, y, text, color, kerning, length); } // Escribe el texto con colores usando un sprite específico void Text::writeColoredWithSprite(Sprite *sprite, int x, int y, const std::string &text, Color color, int kerning, int length) { int shift = 0; const std::string_view VISIBLE_TEXT = (length == -1) ? std::string_view(text) : std::string_view(text).substr(0, length); auto *texture = sprite->getTexture().get(); // Guarda el alpha original y aplica el nuevo Uint8 original_alpha; SDL_GetTextureAlphaMod(texture->getSDLTexture(), &original_alpha); texture->setAlpha(color.a); texture->setColor(color.r, color.g, color.b); sprite->setY(y); for (const auto CH : VISIBLE_TEXT) { const auto INDEX = static_cast(CH); if (INDEX < offset_.size()) { sprite->setSpriteClip(offset_[INDEX].x, offset_[INDEX].y, box_width_, box_height_); sprite->setX(x + shift); sprite->render(); shift += offset_[INDEX].w + kerning; } } // Restaura los valores originales texture->setColor(255, 255, 255); texture->setAlpha(255); } // Escribe stroke con alpha correcto usando textura temporal void Text::writeStrokeWithAlpha(int x, int y, const std::string &text, int kerning, Color stroke_color, Uint8 shadow_distance, int length) { auto *renderer = Screen::get()->getRenderer(); auto *original_target = SDL_GetRenderTarget(renderer); // Calcula dimensiones de la textura temporal auto text_width = Text::length(text, kerning); auto text_height = box_height_; auto temp_width = text_width + (shadow_distance * 2); auto temp_height = text_height + (shadow_distance * 2); // Crea textura temporal auto temp_texture = std::make_shared(renderer); temp_texture->createBlank(temp_width, temp_height, SDL_PIXELFORMAT_RGBA8888, SDL_TEXTUREACCESS_TARGET); temp_texture->setBlendMode(SDL_BLENDMODE_BLEND); // Renderiza el stroke en la textura temporal temp_texture->setAsRenderTarget(renderer); SDL_SetRenderDrawColor(renderer, 0, 0, 0, 0); SDL_RenderClear(renderer); // Selecciona el sprite apropiado para el stroke auto *stroke_sprite = white_sprite_ ? white_sprite_.get() : sprite_.get(); // Renderiza stroke sin alpha (sólido) en textura temporal Color solid_color = Color(stroke_color.r, stroke_color.g, stroke_color.b, 255); for (int dist = 1; dist <= shadow_distance; ++dist) { for (int dy = -dist; dy <= dist; ++dy) { for (int dx = -dist; dx <= dist; ++dx) { writeColoredWithSprite(stroke_sprite, shadow_distance + dx, shadow_distance + dy, text, solid_color, kerning, length); } } } // Restaura render target original SDL_SetRenderTarget(renderer, original_target); // Renderiza la textura temporal con el alpha deseado temp_texture->setAlpha(stroke_color.a); temp_texture->render(x - shadow_distance, y - shadow_distance); } // Escribe el texto con sombra void Text::writeShadowed(int x, int y, const std::string &text, Color color, Uint8 shadow_distance, int kerning, int length) { writeDX(Text::SHADOW, x, y, text, kerning, color, shadow_distance, color, length); write(x, y, text, kerning, length); // Dibuja el texto principal encima } // Escribe el texto centrado en un punto x void Text::writeCentered(int x, int y, const std::string &text, int kerning, int length) { x -= (Text::length(text, kerning) / 2); write(x, y, text, kerning, length); } // Escribe texto con extras void Text::writeDX(Uint8 flags, int x, int y, const std::string &text, int kerning, Color text_color, Uint8 shadow_distance, Color shadow_color, int length) { const auto CENTERED = ((flags & Text::CENTER) == Text::CENTER); const auto SHADOWED = ((flags & Text::SHADOW) == Text::SHADOW); const auto COLORED = ((flags & Text::COLOR) == Text::COLOR); const auto STROKED = ((flags & Text::STROKE) == Text::STROKE); if (CENTERED) { x -= (Text::length(text, kerning) / 2); } if (SHADOWED) { if (white_sprite_) { writeColoredWithSprite(white_sprite_.get(), x + shadow_distance, y + shadow_distance, text, shadow_color, kerning, length); } else { writeColored(x + shadow_distance, y + shadow_distance, text, shadow_color, kerning, length); } } if (STROKED) { if (shadow_color.a < 255) { // Usa textura temporal para alpha correcto writeStrokeWithAlpha(x, y, text, kerning, shadow_color, shadow_distance, length); } else { // Método tradicional para stroke sólido for (int dist = 1; dist <= shadow_distance; ++dist) { for (int dy = -dist; dy <= dist; ++dy) { for (int dx = -dist; dx <= dist; ++dx) { if (white_sprite_) { writeColoredWithSprite(white_sprite_.get(), x + dx, y + dy, text, shadow_color, kerning, length); } else { writeColored(x + dx, y + dy, text, shadow_color, kerning, length); } } } } } } if (COLORED) { writeColored(x, y, text, text_color, kerning, length); } else { write(x, y, text, kerning, length); } } // Escribe texto a partir de un TextStyle void Text::writeStyle(int x, int y, const std::string &text, const Style &style, int length) { writeDX(style.flags, x, y, text, style.kerning, style.text_color, style.shadow_distance, style.shadow_color); } // Obtiene la longitud en pixels de una cadena auto Text::length(const std::string &text, int kerning) const -> int { int shift = 0; for (const auto &ch : text) { // Convertimos a unsigned char para obtener el valor ASCII correcto (0-255) const auto INDEX = static_cast(ch); // Verificamos si el carácter está dentro de los límites del array if (INDEX < offset_.size()) { shift += (offset_[INDEX].w + kerning); } } // Descuenta el kerning del último caracter si el texto no está vacío return text.empty() ? 0 : shift - kerning; } // Devuelve el valor de la variable auto Text::getCharacterSize() const -> int { return box_width_; } // Establece si se usa un tamaño fijo de letra void Text::setFixedWidth(bool value) { fixed_width_ = value; } // Llena una estructuta TextFile desde un fichero auto Text::loadFile(const std::string &file_path) -> std::shared_ptr { auto tf = std::make_shared(); // Inicializa a cero el vector con las coordenadas for (auto &i : tf->offset) { i.x = 0; i.y = 0; i.w = 0; tf->box_width = 0; tf->box_height = 0; } // Intenta cargar desde ResourceHelper primero auto resource_data = ResourceHelper::loadFile(file_path); std::istringstream stream; bool using_resource_data = false; if (!resource_data.empty()) { std::string content(resource_data.begin(), resource_data.end()); stream.str(content); using_resource_data = true; } // Fallback a archivo directo std::ifstream file; if (!using_resource_data) { file.open(file_path); } std::istream &input_stream = using_resource_data ? stream : static_cast(file); if ((using_resource_data && stream.good()) || (!using_resource_data && file.is_open() && file.good())) { std::string buffer; // Lee los dos primeros valores del fichero std::getline(input_stream, buffer); std::getline(input_stream, buffer); tf->box_width = std::stoi(buffer); std::getline(input_stream, buffer); std::getline(input_stream, buffer); tf->box_height = std::stoi(buffer); // lee el resto de datos del fichero auto index = 32; auto line_read = 0; while (std::getline(input_stream, buffer)) { // Almacena solo las lineas impares if (line_read % 2 == 1) { tf->offset[index++].w = std::stoi(buffer); } // Limpia el buffer buffer.clear(); line_read++; }; // Cierra el fichero si se usó printWithDots("Text File : ", getFileName(file_path), "[ LOADED ]"); if (!using_resource_data && file.is_open()) { file.close(); } } // El fichero no se puede abrir else { std::cerr << "Error: Fichero no encontrado " << getFileName(file_path) << '\n'; throw std::runtime_error("Fichero no encontrado: " + getFileName(file_path)); } // Establece las coordenadas para cada caracter ascii de la cadena y su ancho for (int i = 32; i < 128; ++i) { tf->offset[i].x = ((i - 32) % 15) * tf->box_width; tf->offset[i].y = ((i - 32) / 15) * tf->box_height; } return tf; }