#include "fade.h" #include // Para SDL_SetRenderTarget, SDL_FRect, SDL_GetRenderTarget, SDL_RenderFillRect, SDL_SetRenderDrawBlendMode, SDL_SetRenderDrawColor, Uint8, SDL_GetRenderDrawBlendMode, SDL_BLENDMODE_NONE, SDL_BlendMode, SDL_CreateTexture, SDL_DestroyTexture, SDL_RenderClear, SDL_RenderTexture, SDL_SetTextureAlphaMod, SDL_SetTextureBlendMode, SDL_BLENDMODE_BLEND, SDL_PixelFormat, SDL_TextureAccess #include // Para min, max #include // Para rand, size_t #include "color.h" // Para Color #include "param.h" // Para Param, param, ParamGame, ParamFade #include "screen.h" // Para Screen // Constructor Fade::Fade() : renderer_(Screen::get()->getRenderer()) { // Crea la textura donde dibujar el fade backbuffer_ = SDL_CreateTexture(renderer_, SDL_PIXELFORMAT_RGBA8888, SDL_TEXTUREACCESS_TARGET, param.game.width, param.game.height); SDL_SetTextureBlendMode(backbuffer_, SDL_BLENDMODE_BLEND); // Inicializa las variables init(); } // Destructor Fade::~Fade() { SDL_DestroyTexture(backbuffer_); } // Inicializa las variables void Fade::init() { type_ = Type::CENTER; mode_ = Mode::OUT; counter_ = 0; r_ = 0; g_ = 0; b_ = 0; a_ = 0; post_duration_ = 0; post_start_time_ = 0; pre_duration_ = 0; pre_start_time_ = 0; num_squares_width_ = param.fade.num_squares_width; num_squares_height_ = param.fade.num_squares_height; random_squares_duration_ = param.fade.random_squares_duration_ms; // Usar como duración en ms square_transition_duration_ = random_squares_duration_ / 4; // 25% del tiempo total para la transición individual random_squares_start_time_ = 0; } // Resetea algunas variables para volver a hacer el fade sin perder ciertos parametros void Fade::reset() { state_ = State::NOT_ENABLED; counter_ = 0; post_start_time_ = 0; pre_start_time_ = 0; } // Pinta una transición en pantalla void Fade::render() { if (state_ != State::NOT_ENABLED) { // Para fade IN terminado, no renderizar (auto-desactivación visual) if (state_ == State::FINISHED && mode_ == Mode::IN) { return; } SDL_RenderTexture(renderer_, backbuffer_, nullptr, nullptr); } } // Actualiza las variables internas void Fade::update() { switch (state_) { case State::PRE: updatePreState(); break; case State::FADING: updateFadingState(); break; case State::POST: updatePostState(); break; default: break; } } // Compatibilidad delta-time (ignora el parámetro ya que usa SDL_GetTicks) void Fade::update(float delta_time) { update(); // Llama al método original } void Fade::updatePreState() { // Sistema basado en tiempo únicamente Uint32 elapsed_time = SDL_GetTicks() - pre_start_time_; if (elapsed_time >= static_cast(pre_duration_)) { state_ = State::FADING; // CRÍTICO: Reinicializar tiempo de inicio para tipos que usan random_squares_start_time_ if (type_ == Type::RANDOM_SQUARE2 || type_ == Type::DIAGONAL) { random_squares_start_time_ = SDL_GetTicks(); } } } void Fade::updateFadingState() { switch (type_) { case Type::FULLSCREEN: updateFullscreenFade(); break; case Type::CENTER: updateCenterFade(); break; case Type::RANDOM_SQUARE: updateRandomSquareFade(); break; case Type::RANDOM_SQUARE2: updateRandomSquare2Fade(); break; case Type::DIAGONAL: updateDiagonalFade(); break; case Type::VENETIAN: updateVenetianFade(); break; default: break; } counter_++; } void Fade::changeToPostState() { state_ = State::POST; post_start_time_ = SDL_GetTicks(); } void Fade::updatePostState() { // Sistema basado en tiempo únicamente Uint32 elapsed_time = SDL_GetTicks() - post_start_time_; if (elapsed_time >= static_cast(post_duration_)) { state_ = State::FINISHED; } // Mantener el alpha final correcto para cada tipo de fade Uint8 post_alpha = a_; if (type_ == Type::RANDOM_SQUARE2 || type_ == Type::DIAGONAL) { post_alpha = (mode_ == Mode::OUT) ? 255 : 0; } cleanBackbuffer(r_, g_, b_, post_alpha); } void Fade::updateFullscreenFade() { // Modifica la transparencia a_ = mode_ == Mode::OUT ? std::min(counter_ * 4, 255) : 255 - std::min(counter_ * 4, 255); SDL_SetTextureAlphaMod(backbuffer_, a_); // Comprueba si ha terminado if (counter_ >= 255 / 4) { changeToPostState(); } } void Fade::updateCenterFade() { drawCenterFadeRectangles(); // Comprueba si ha terminado if ((counter_ * 4) > param.game.height) { a_ = 255; changeToPostState(); } } void Fade::drawCenterFadeRectangles() { auto *temp = SDL_GetRenderTarget(renderer_); SDL_SetRenderTarget(renderer_, backbuffer_); SDL_SetRenderDrawColor(renderer_, r_, g_, b_, a_); for (int i = 0; i < counter_; i++) { rect1_.h = rect2_.h = i * 4; rect2_.y = param.game.height - (i * 4); SDL_RenderFillRect(renderer_, &rect1_); SDL_RenderFillRect(renderer_, &rect2_); value_ = calculateValue(0, counter_, i); } SDL_SetRenderTarget(renderer_, temp); } void Fade::updateRandomSquareFade() { Uint32 elapsed_time = SDL_GetTicks() - random_squares_start_time_; float progress = static_cast(elapsed_time) / random_squares_duration_; // Calcula cuántos cuadrados deberían estar activos int total_squares = num_squares_width_ * num_squares_height_; int active_squares = static_cast(progress * total_squares); active_squares = std::min(active_squares, total_squares); // Dibuja los cuadrados activos drawRandomSquares(active_squares); value_ = calculateValue(0, total_squares, active_squares); // Comprueba si ha terminado if (elapsed_time >= static_cast(random_squares_duration_)) { changeToPostState(); } } void Fade::updateRandomSquare2Fade() { Uint32 elapsed_time = SDL_GetTicks() - random_squares_start_time_; int total_squares = num_squares_width_ * num_squares_height_; // Calcula el tiempo de activación: total - tiempo que necesitan los últimos cuadrados int activation_time = random_squares_duration_ - square_transition_duration_; activation_time = std::max(activation_time, square_transition_duration_); // Mínimo igual a la duración de transición // Lógica diferente según el modo int squares_to_activate = 0; if (mode_ == Mode::OUT) { // OUT: Activa cuadrados gradualmente if (elapsed_time < static_cast(activation_time)) { float activation_progress = static_cast(elapsed_time) / activation_time; squares_to_activate = static_cast(activation_progress * total_squares); } else { squares_to_activate = total_squares; // Activar todos } // Activa nuevos cuadrados y guarda su tiempo de activación for (int i = 0; i < squares_to_activate && i < total_squares; ++i) { if (square_age_[i] == -1) { square_age_[i] = elapsed_time; // Guarda el tiempo de activación } } } else { // IN: Todos los cuadrados empiezan activos desde el inicio squares_to_activate = total_squares; // Activa cuadrados gradualmente con tiempo de inicio escalonado float activation_progress = static_cast(elapsed_time) / activation_time; int squares_starting_transition = static_cast(activation_progress * total_squares); // Asegurar que al menos 1 cuadrado se active desde el primer frame squares_starting_transition = std::max(squares_starting_transition, 1); squares_starting_transition = std::min(squares_starting_transition, total_squares); for (int i = 0; i < squares_starting_transition; ++i) { if (square_age_[i] == -1) { square_age_[i] = elapsed_time; // Empieza la transición a transparente } } } drawRandomSquares2(); value_ = calculateValue(0, total_squares, squares_to_activate); // Comprueba si ha terminado - todos los cuadrados han completado su transición bool all_completed = (squares_to_activate >= total_squares); if (all_completed) { // Verificar que todos han completado su transición individual for (int i = 0; i < total_squares; ++i) { if (square_age_[i] >= 0) { // Cuadrado activado Uint32 square_elapsed = elapsed_time - square_age_[i]; if (square_elapsed < static_cast(square_transition_duration_)) { all_completed = false; break; } } } if (all_completed) { // Pintar textura final: OUT opaca, IN transparente Uint8 final_alpha = (mode_ == Mode::OUT) ? 255 : 0; cleanBackbuffer(r_, g_, b_, final_alpha); changeToPostState(); } } } void Fade::updateDiagonalFade() { Uint32 elapsed_time = SDL_GetTicks() - random_squares_start_time_; int total_squares = num_squares_width_ * num_squares_height_; // Calcula el tiempo de activación: total - tiempo que necesitan los últimos cuadrados int activation_time = random_squares_duration_ - square_transition_duration_; activation_time = std::max(activation_time, square_transition_duration_); // Calcula cuántas diagonales deberían estar activas int max_diagonal = num_squares_width_ + num_squares_height_ - 1; // Número total de diagonales int active_diagonals = 0; if (mode_ == Mode::OUT) { // OUT: Activa diagonales gradualmente desde esquina superior izquierda if (elapsed_time < static_cast(activation_time)) { float activation_progress = static_cast(elapsed_time) / activation_time; active_diagonals = static_cast(activation_progress * max_diagonal); } else { active_diagonals = max_diagonal; // Activar todas } // Activa cuadrados por diagonales for (int diagonal = 0; diagonal < active_diagonals; ++diagonal) { activateDiagonal(diagonal, elapsed_time); } } else { // IN: Todas las diagonales empiezan activas, van desapareciendo active_diagonals = max_diagonal; // Activa diagonales gradualmente para transición if (elapsed_time < static_cast(activation_time)) { float activation_progress = static_cast(elapsed_time) / activation_time; int diagonals_starting_transition = static_cast(activation_progress * max_diagonal); for (int diagonal = 0; diagonal < diagonals_starting_transition; ++diagonal) { activateDiagonal(diagonal, elapsed_time); } } else { // Activar transición en todas las diagonales restantes for (int diagonal = 0; diagonal < max_diagonal; ++diagonal) { activateDiagonal(diagonal, elapsed_time); } } } drawDiagonal(); value_ = calculateValue(0, total_squares, active_diagonals * (total_squares / max_diagonal)); // Comprueba si ha terminado - todas las diagonales activadas y último cuadrado completó transición bool all_completed = (active_diagonals >= max_diagonal); if (all_completed) { // Verificar que todos han completado su transición individual for (int i = 0; i < total_squares; ++i) { if (square_age_[i] >= 0) { // Cuadrado activado Uint32 square_elapsed = elapsed_time - square_age_[i]; if (square_elapsed < static_cast(square_transition_duration_)) { all_completed = false; break; } } } if (all_completed) { // Pintar textura final: OUT opaca, IN transparente Uint8 final_alpha = (mode_ == Mode::OUT) ? 255 : 0; cleanBackbuffer(r_, g_, b_, final_alpha); changeToPostState(); } } } void Fade::activateDiagonal(int diagonal_index, Uint32 current_time) { // Para cada diagonal, activamos los cuadrados que pertenecen a esa diagonal // Diagonal 0: (0,0) // Diagonal 1: (1,0), (0,1) // Diagonal 2: (2,0), (1,1), (0,2) // etc. for (int x = 0; x < num_squares_width_; ++x) { int y = diagonal_index - x; // Verificar que y está dentro de los límites if (y >= 0 && y < num_squares_height_) { // Convertir coordenadas (x,y) a índice en el vector int index = y * num_squares_width_ + x; if (index >= 0 && index < static_cast(square_age_.size())) { if (square_age_[index] == -1) { square_age_[index] = current_time; // Guarda el tiempo de activación } } } } } void Fade::drawDiagonal() { auto *temp = SDL_GetRenderTarget(renderer_); SDL_SetRenderTarget(renderer_, backbuffer_); // CRÍTICO: Limpiar la textura antes de dibujar SDL_SetRenderDrawColor(renderer_, 0, 0, 0, 0); SDL_RenderClear(renderer_); SDL_BlendMode blend_mode; SDL_GetRenderDrawBlendMode(renderer_, &blend_mode); SDL_SetRenderDrawBlendMode(renderer_, SDL_BLENDMODE_BLEND); // Usar BLEND para alpha Uint32 current_time = SDL_GetTicks() - random_squares_start_time_; // Lógica unificada: sobre textura transparente, pintar cuadrados según su estado for (size_t i = 0; i < square_.size(); ++i) { Uint8 current_alpha = 0; if (square_age_[i] == -1) { // Cuadrado no activado if (mode_ == Mode::OUT) { current_alpha = 0; // OUT: transparente si no activado } else { current_alpha = a_; // IN: opaco si no activado } } else { // Cuadrado activado - calculamos progreso Uint32 square_elapsed = current_time - square_age_[i]; float progress = std::min(static_cast(square_elapsed) / square_transition_duration_, 1.0f); if (mode_ == Mode::OUT) { current_alpha = static_cast(progress * a_); // 0 → 255 } else { current_alpha = static_cast((1.0f - progress) * a_); // 255 → 0 } } if (current_alpha > 0) { SDL_SetRenderDrawColor(renderer_, r_, g_, b_, current_alpha); SDL_RenderFillRect(renderer_, &square_[i]); } } SDL_SetRenderDrawBlendMode(renderer_, blend_mode); SDL_SetRenderTarget(renderer_, temp); } void Fade::drawRandomSquares(int active_count) { auto *temp = SDL_GetRenderTarget(renderer_); SDL_SetRenderTarget(renderer_, backbuffer_); SDL_BlendMode blend_mode; SDL_GetRenderDrawBlendMode(renderer_, &blend_mode); SDL_SetRenderDrawBlendMode(renderer_, SDL_BLENDMODE_NONE); SDL_SetRenderDrawColor(renderer_, r_, g_, b_, a_); // Dibuja solo los cuadrados activos for (int i = 0; i < active_count && i < static_cast(square_.size()); ++i) { SDL_RenderFillRect(renderer_, &square_[i]); } SDL_SetRenderDrawBlendMode(renderer_, blend_mode); SDL_SetRenderTarget(renderer_, temp); } void Fade::drawRandomSquares2() { auto *temp = SDL_GetRenderTarget(renderer_); SDL_SetRenderTarget(renderer_, backbuffer_); // CRÍTICO: Limpiar la textura antes de dibujar SDL_SetRenderDrawColor(renderer_, 0, 0, 0, 0); SDL_RenderClear(renderer_); SDL_BlendMode blend_mode; SDL_GetRenderDrawBlendMode(renderer_, &blend_mode); SDL_SetRenderDrawBlendMode(renderer_, SDL_BLENDMODE_BLEND); // Usar BLEND para alpha Uint32 current_time = SDL_GetTicks() - random_squares_start_time_; // Lógica unificada: sobre textura transparente, pintar cuadrados según su estado for (size_t i = 0; i < square_.size(); ++i) { Uint8 current_alpha = 0; if (square_age_[i] == -1) { // Cuadrado no activado if (mode_ == Mode::OUT) { current_alpha = 0; // OUT: transparente si no activado } else { current_alpha = a_; // IN: opaco si no activado } } else { // Cuadrado activado - calculamos progreso Uint32 square_elapsed = current_time - square_age_[i]; float progress = std::min(static_cast(square_elapsed) / square_transition_duration_, 1.0f); if (mode_ == Mode::OUT) { current_alpha = static_cast(progress * a_); // 0 → 255 } else { current_alpha = static_cast((1.0f - progress) * a_); // 255 → 0 } } if (current_alpha > 0) { SDL_SetRenderDrawColor(renderer_, r_, g_, b_, current_alpha); SDL_RenderFillRect(renderer_, &square_[i]); } } SDL_SetRenderDrawBlendMode(renderer_, blend_mode); SDL_SetRenderTarget(renderer_, temp); } void Fade::updateVenetianFade() { if (square_.back().h < param.fade.venetian_size) { drawVenetianBlinds(); updateVenetianRectangles(); calculateVenetianProgress(); } else { changeToPostState(); } } void Fade::drawVenetianBlinds() { auto *temp = SDL_GetRenderTarget(renderer_); SDL_SetRenderTarget(renderer_, backbuffer_); SDL_BlendMode blend_mode; SDL_GetRenderDrawBlendMode(renderer_, &blend_mode); SDL_SetRenderDrawBlendMode(renderer_, SDL_BLENDMODE_NONE); SDL_SetRenderDrawColor(renderer_, r_, g_, b_, a_); for (const auto &rect : square_) { SDL_RenderFillRect(renderer_, &rect); } SDL_SetRenderDrawBlendMode(renderer_, blend_mode); SDL_SetRenderTarget(renderer_, temp); } void Fade::updateVenetianRectangles() { const auto H = counter_ / 2; for (size_t i = 0; i < square_.size(); ++i) { square_.at(i).h = i == 0 ? H : std::max(static_cast(square_.at(i - 1).h) - 2, 0); } } void Fade::calculateVenetianProgress() { int completed = 0; for (const auto &square : square_) { if (square.h >= param.fade.venetian_size) { ++completed; } } value_ = calculateValue(0, square_.size() - 1, completed); } // Activa el fade void Fade::activate() { // Si ya está habilitado, no hay que volverlo a activar if (state_ != State::NOT_ENABLED) { return; } state_ = State::PRE; counter_ = 0; pre_start_time_ = SDL_GetTicks(); switch (type_) { case Type::FULLSCREEN: { // Pinta el backbuffer_ de color sólido cleanBackbuffer(r_, g_, b_, 255); break; } case Type::CENTER: { rect1_ = {.x = 0, .y = 0, .w = param.game.width, .h = 0}; rect2_ = {.x = 0, .y = 0, .w = param.game.width, .h = 0}; a_ = 64; break; } case Type::RANDOM_SQUARE: { rect1_ = {.x = 0, .y = 0, .w = static_cast(param.game.width / num_squares_width_), .h = static_cast(param.game.height / num_squares_height_)}; square_.clear(); // Añade los cuadrados al vector for (int i = 0; i < num_squares_width_ * num_squares_height_; ++i) { rect1_.x = (i % num_squares_width_) * rect1_.w; rect1_.y = (i / num_squares_width_) * rect1_.h; square_.push_back(rect1_); } // Desordena el vector de cuadrados auto num = num_squares_width_ * num_squares_height_; while (num > 1) { auto num_arreu = rand() % num; SDL_FRect temp = square_[num_arreu]; square_[num_arreu] = square_[num - 1]; square_[num - 1] = temp; num--; } // Limpia la textura a_ = mode_ == Mode::OUT ? 0 : 255; cleanBackbuffer(r_, g_, b_, a_); // Deja el color listo para usar a_ = mode_ == Mode::OUT ? 255 : 0; // Inicializa el tiempo de inicio random_squares_start_time_ = SDL_GetTicks(); break; } case Type::RANDOM_SQUARE2: { rect1_ = {.x = 0, .y = 0, .w = static_cast(param.game.width / num_squares_width_), .h = static_cast(param.game.height / num_squares_height_)}; square_.clear(); square_age_.clear(); // Añade los cuadrados al vector for (int i = 0; i < num_squares_width_ * num_squares_height_; ++i) { rect1_.x = (i % num_squares_width_) * rect1_.w; rect1_.y = (i / num_squares_width_) * rect1_.h; square_.push_back(rect1_); square_age_.push_back(-1); // -1 indica cuadrado no activado aún } // Desordena el vector de cuadrados y edades auto num = num_squares_width_ * num_squares_height_; while (num > 1) { auto num_arreu = rand() % num; SDL_FRect temp_rect = square_[num_arreu]; int temp_age = square_age_[num_arreu]; square_[num_arreu] = square_[num - 1]; square_age_[num_arreu] = square_age_[num - 1]; square_[num - 1] = temp_rect; square_age_[num - 1] = temp_age; num--; } // Textura inicial: OUT transparente, IN opaca Uint8 initial_alpha = (mode_ == Mode::OUT) ? 0 : 255; cleanBackbuffer(r_, g_, b_, initial_alpha); // Deja el color listo para usar (alpha target para los cuadrados) a_ = 255; // Siempre usar 255 como alpha target // Inicializa el tiempo de inicio y recalcula la duración de transición random_squares_start_time_ = SDL_GetTicks(); square_transition_duration_ = std::max(random_squares_duration_ / 4, 100); // Mínimo 100ms break; } case Type::DIAGONAL: { rect1_ = {.x = 0, .y = 0, .w = static_cast(param.game.width / num_squares_width_), .h = static_cast(param.game.height / num_squares_height_)}; square_.clear(); square_age_.clear(); // Añade los cuadrados al vector en orden (sin desordenar) for (int i = 0; i < num_squares_width_ * num_squares_height_; ++i) { rect1_.x = (i % num_squares_width_) * rect1_.w; rect1_.y = (i / num_squares_width_) * rect1_.h; square_.push_back(rect1_); square_age_.push_back(-1); // -1 indica cuadrado no activado aún } // Textura inicial: OUT transparente, IN opaca Uint8 initial_alpha = (mode_ == Mode::OUT) ? 0 : 255; cleanBackbuffer(r_, g_, b_, initial_alpha); // Deja el color listo para usar (alpha target para los cuadrados) a_ = 255; // Siempre usar 255 como alpha target // Inicializa el tiempo de inicio y recalcula la duración de transición random_squares_start_time_ = SDL_GetTicks(); square_transition_duration_ = std::max(random_squares_duration_ / 4, 100); // Mínimo 100ms break; } case Type::VENETIAN: { // Limpia la textura a_ = mode_ == Mode::OUT ? 0 : 255; cleanBackbuffer(r_, g_, b_, a_); // Deja el color listo para usar a_ = mode_ == Mode::OUT ? 255 : 0; // Añade los cuadrados al vector square_.clear(); rect1_ = {.x = 0, .y = 0, .w = param.game.width, .h = 0}; const int MAX = param.game.height / param.fade.venetian_size; for (int i = 0; i < MAX; ++i) { rect1_.y = i * param.fade.venetian_size; square_.push_back(rect1_); } break; } } } // Establece el color del fade void Fade::setColor(Uint8 r, Uint8 g, Uint8 b) { r_ = r; g_ = g; b_ = b; } // Establece el color del fade void Fade::setColor(Color color) { r_ = color.r; g_ = color.g; b_ = color.b; } // Limpia el backbuffer void Fade::cleanBackbuffer(Uint8 r, Uint8 g, Uint8 b, Uint8 a) { // Dibujamos sobre el backbuffer_ auto *temp = SDL_GetRenderTarget(renderer_); SDL_SetRenderTarget(renderer_, backbuffer_); // Pintamos la textura con el color del fade SDL_SetRenderDrawColor(renderer_, r, g, b, a); SDL_RenderClear(renderer_); // Vuelve a dejar el renderizador como estaba SDL_SetRenderTarget(renderer_, temp); } // Calcula el valor del estado del fade auto Fade::calculateValue(int min, int max, int current) -> int { if (current < min) { return 0; } if (current > max) { return 100; } return static_cast(100.0 * (current - min) / (max - min)); }