252 lines
6.2 KiB
C++
252 lines
6.2 KiB
C++
/**
|
|
* @file easing_functions.hpp
|
|
* @brief Colección de funciones de suavizado (easing) para animaciones
|
|
*
|
|
* Todas las funciones toman un parámetro t (0.0 a 1.0) que representa
|
|
* el progreso de la animación y retornan el valor suavizado.
|
|
*
|
|
* Convenciones:
|
|
* - In: Aceleración (slow -> fast)
|
|
* - Out: Desaceleración (fast -> slow)
|
|
* - InOut: Aceleración + Desaceleración (slow -> fast -> slow)
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <numbers>
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
namespace Easing {
|
|
|
|
// LINEAR
|
|
inline auto linear(float t) -> float {
|
|
return t;
|
|
}
|
|
|
|
// QUAD (Cuadrática: t^2)
|
|
inline auto quadIn(float t) -> float {
|
|
return t * t;
|
|
}
|
|
|
|
inline auto quadOut(float t) -> float {
|
|
return t * (2.0F - t);
|
|
}
|
|
|
|
inline auto quadInOut(float t) -> float {
|
|
if (t < 0.5F) {
|
|
return 2.0F * t * t;
|
|
}
|
|
return -1.0F + ((4.0F - 2.0F * t) * t);
|
|
}
|
|
|
|
// CUBIC (Cúbica: t^3)
|
|
inline auto cubicIn(float t) -> float {
|
|
return t * t * t;
|
|
}
|
|
|
|
inline auto cubicOut(float t) -> float {
|
|
const float F = t - 1.0F;
|
|
return (F * F * F) + 1.0F;
|
|
}
|
|
|
|
inline auto cubicInOut(float t) -> float {
|
|
if (t < 0.5F) {
|
|
return 4.0F * t * t * t;
|
|
}
|
|
const float F = ((2.0F * t) - 2.0F);
|
|
return (0.5F * F * F * F) + 1.0F;
|
|
}
|
|
|
|
// QUART (Cuártica: t^4)
|
|
inline auto quartIn(float t) -> float {
|
|
return t * t * t * t;
|
|
}
|
|
|
|
inline auto quartOut(float t) -> float {
|
|
const float F = t - 1.0F;
|
|
return 1.0F - (F * F * F * F);
|
|
}
|
|
|
|
inline auto quartInOut(float t) -> float {
|
|
if (t < 0.5F) {
|
|
return 8.0F * t * t * t * t;
|
|
}
|
|
const float F = t - 1.0F;
|
|
return 1.0F - (8.0F * F * F * F * F);
|
|
}
|
|
|
|
// QUINT (Quíntica: t^5)
|
|
inline auto quintIn(float t) -> float {
|
|
return t * t * t * t * t;
|
|
}
|
|
|
|
inline auto quintOut(float t) -> float {
|
|
const float F = t - 1.0F;
|
|
return (F * F * F * F * F) + 1.0F;
|
|
}
|
|
|
|
inline auto quintInOut(float t) -> float {
|
|
if (t < 0.5F) {
|
|
return 16.0F * t * t * t * t * t;
|
|
}
|
|
const float F = ((2.0F * t) - 2.0F);
|
|
return (0.5F * F * F * F * F * F) + 1.0F;
|
|
}
|
|
|
|
// SINE (Sinusoidal)
|
|
inline auto sineIn(float t) -> float {
|
|
return 1.0F - std::cos(t * std::numbers::pi_v<float> * 0.5F);
|
|
}
|
|
|
|
inline auto sineOut(float t) -> float {
|
|
return std::sin(t * std::numbers::pi_v<float> * 0.5F);
|
|
}
|
|
|
|
inline auto sineInOut(float t) -> float {
|
|
return 0.5F * (1.0F - std::cos(std::numbers::pi_v<float> * t));
|
|
}
|
|
|
|
// EXPO (Exponencial)
|
|
inline auto expoIn(float t) -> float {
|
|
if (t == 0.0F) {
|
|
return 0.0F;
|
|
}
|
|
return std::pow(2.0F, 10.0F * (t - 1.0F));
|
|
}
|
|
|
|
inline auto expoOut(float t) -> float {
|
|
if (t == 1.0F) {
|
|
return 1.0F;
|
|
}
|
|
return 1.0F - std::pow(2.0F, -10.0F * t);
|
|
}
|
|
|
|
inline auto expoInOut(float t) -> float {
|
|
if (t == 0.0F || t == 1.0F) {
|
|
return t;
|
|
}
|
|
|
|
if (t < 0.5F) {
|
|
return 0.5F * std::pow(2.0F, (20.0F * t) - 10.0F);
|
|
}
|
|
return 0.5F * (2.0F - std::pow(2.0F, (-20.0F * t) + 10.0F));
|
|
}
|
|
|
|
// CIRC (Circular)
|
|
inline auto circIn(float t) -> float {
|
|
return 1.0F - std::sqrt(1.0F - (t * t));
|
|
}
|
|
|
|
inline auto circOut(float t) -> float {
|
|
const float F = t - 1.0F;
|
|
return std::sqrt(1.0F - (F * F));
|
|
}
|
|
|
|
inline auto circInOut(float t) -> float {
|
|
if (t < 0.5F) {
|
|
return 0.5F * (1.0F - std::sqrt(1.0F - (4.0F * t * t)));
|
|
}
|
|
const float F = (2.0F * t) - 2.0F;
|
|
return 0.5F * (std::sqrt(1.0F - (F * F)) + 1.0F);
|
|
}
|
|
|
|
// BACK (Overshoot - retrocede antes de avanzar)
|
|
inline auto backIn(float t, float overshoot = 1.70158F) -> float {
|
|
return t * t * ((overshoot + 1.0F) * t - overshoot);
|
|
}
|
|
|
|
inline auto backOut(float t, float overshoot = 1.70158F) -> float {
|
|
const float F = t - 1.0F;
|
|
return (F * F * ((overshoot + 1.0F) * F + overshoot)) + 1.0F;
|
|
}
|
|
|
|
inline auto backInOut(float t, float overshoot = 1.70158F) -> float {
|
|
const float S = overshoot * 1.525F;
|
|
|
|
if (t < 0.5F) {
|
|
const float F = 2.0F * t;
|
|
return 0.5F * (F * F * ((S + 1.0F) * F - S));
|
|
}
|
|
|
|
const float F = (2.0F * t) - 2.0F;
|
|
return 0.5F * (F * F * ((S + 1.0F) * F + S) + 2.0F);
|
|
}
|
|
|
|
// ELASTIC (Oscilación elástica - efecto de resorte)
|
|
inline auto elasticIn(float t, float amplitude = 1.0F, float period = 0.3F) -> float {
|
|
if (t == 0.0F || t == 1.0F) {
|
|
return t;
|
|
}
|
|
|
|
const float S = period / (2.0F * std::numbers::pi_v<float>)*std::asin(1.0F / amplitude);
|
|
const float F = t - 1.0F;
|
|
return -(amplitude * std::pow(2.0F, 10.0F * F) *
|
|
std::sin((F - S) * (2.0F * std::numbers::pi_v<float>) / period));
|
|
}
|
|
|
|
inline auto elasticOut(float t, float amplitude = 1.0F, float period = 0.3F) -> float {
|
|
if (t == 0.0F || t == 1.0F) {
|
|
return t;
|
|
}
|
|
|
|
const float S = period / (2.0F * std::numbers::pi_v<float>)*std::asin(1.0F / amplitude);
|
|
return (amplitude * std::pow(2.0F, -10.0F * t) *
|
|
std::sin((t - S) * (2.0F * std::numbers::pi_v<float>) / period)) +
|
|
1.0F;
|
|
}
|
|
|
|
inline auto elasticInOut(float t, float amplitude = 1.0F, float period = 0.3F) -> float {
|
|
if (t == 0.0F || t == 1.0F) {
|
|
return t;
|
|
}
|
|
|
|
const float S = period / (2.0F * std::numbers::pi_v<float>)*std::asin(1.0F / amplitude);
|
|
|
|
if (t < 0.5F) {
|
|
const float F = (2.0F * t) - 1.0F;
|
|
return -0.5F * (amplitude * std::pow(2.0F, 10.0F * F) * std::sin((F - S) * (2.0F * std::numbers::pi_v<float>) / period));
|
|
}
|
|
|
|
const float F = (2.0F * t) - 1.0F;
|
|
return (0.5F * amplitude * std::pow(2.0F, -10.0F * F) *
|
|
std::sin((F - S) * (2.0F * std::numbers::pi_v<float>) / period)) +
|
|
1.0F;
|
|
}
|
|
|
|
// BOUNCE (Rebote - simula física de rebote)
|
|
inline auto bounceOut(float t) -> float {
|
|
const float N1 = 7.5625F;
|
|
const float D1 = 2.75F;
|
|
|
|
if (t < 1.0F / D1) {
|
|
return N1 * t * t;
|
|
}
|
|
if (t < 2.0F / D1) {
|
|
const float F = t - (1.5F / D1);
|
|
return (N1 * F * F) + 0.75F;
|
|
}
|
|
if (t < 2.5F / D1) {
|
|
const float F = t - (2.25F / D1);
|
|
return (N1 * F * F) + 0.9375F;
|
|
}
|
|
const float F = t - (2.625F / D1);
|
|
return (N1 * F * F) + 0.984375F;
|
|
}
|
|
|
|
inline auto bounceIn(float t) -> float {
|
|
return 1.0F - bounceOut(1.0F - t);
|
|
}
|
|
|
|
inline auto bounceInOut(float t) -> float {
|
|
if (t < 0.5F) {
|
|
return 0.5F * bounceIn(2.0F * t);
|
|
}
|
|
return (0.5F * bounceOut((2.0F * t) - 1.0F)) + 0.5F;
|
|
}
|
|
|
|
} // namespace Easing
|