apegat de mala manera els shaders del CCAE i fets uns apanyets per a vore si compila

This commit is contained in:
2025-10-15 12:59:17 +02:00
parent e4a08d2ec7
commit e811cf0a1d
23 changed files with 1158 additions and 829 deletions

View File

@@ -73,9 +73,16 @@ set(APP_SOURCES
source/sprite/surface_animated_sprite.cpp source/sprite/surface_animated_sprite.cpp
source/sprite/surface_moving_sprite.cpp source/sprite/surface_moving_sprite.cpp
source/sprite/surface_sprite.cpp source/sprite/surface_sprite.cpp
)
# Fuentes de librerías de terceros
set(EXTERNAL_SOURCES
source/external/jail_audio.cpp source/external/jail_audio.cpp
source/external/jail_shader.cpp )
# Fuentes del sistema de renderizado
set(RENDERING_SOURCES
source/rendering/opengl/opengl_shader.cpp
) )
# Configuración de SDL3 # Configuración de SDL3
@@ -83,7 +90,7 @@ find_package(SDL3 REQUIRED CONFIG REQUIRED COMPONENTS SDL3)
message(STATUS "SDL3 encontrado: ${SDL3_INCLUDE_DIRS}") message(STATUS "SDL3 encontrado: ${SDL3_INCLUDE_DIRS}")
# --- 2. AÑADIR EJECUTABLE --- # --- 2. AÑADIR EJECUTABLE ---
add_executable(${PROJECT_NAME} ${APP_SOURCES}) add_executable(${PROJECT_NAME} ${APP_SOURCES} ${EXTERNAL_SOURCES} ${RENDERING_SOURCES})
# --- 3. DIRECTORIOS DE INCLUSIÓN --- # --- 3. DIRECTORIOS DE INCLUSIÓN ---
target_include_directories(${PROJECT_NAME} PUBLIC target_include_directories(${PROJECT_NAME} PUBLIC

View File

@@ -1,234 +0,0 @@
/*
crt-pi - A Raspberry Pi friendly CRT shader.
Copyright (C) 2015-2016 davej
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
Notes:
This shader is designed to work well on Raspberry Pi GPUs (i.e. 1080P @ 60Hz on a game with a 4:3 aspect ratio). It pushes the Pi's GPU hard and enabling some features will slow it down so that it is no longer able to match 1080P @ 60Hz. You will need to overclock your Pi to the fastest setting in raspi-config to get the best results from this shader: 'Pi2' for Pi2 and 'Turbo' for original Pi and Pi Zero. Note: Pi2s are slower at running the shader than other Pis, this seems to be down to Pi2s lower maximum memory speed. Pi2s don't quite manage 1080P @ 60Hz - they drop about 1 in 1000 frames. You probably won't notice this, but if you do, try enabling FAKE_GAMMA.
SCANLINES enables scanlines. You'll almost certainly want to use it with MULTISAMPLE to reduce moire effects. SCANLINE_WEIGHT defines how wide scanlines are (it is an inverse value so a higher number = thinner lines). SCANLINE_GAP_BRIGHTNESS defines how dark the gaps between the scan lines are. Darker gaps between scan lines make moire effects more likely.
GAMMA enables gamma correction using the values in INPUT_GAMMA and OUTPUT_GAMMA. FAKE_GAMMA causes it to ignore the values in INPUT_GAMMA and OUTPUT_GAMMA and approximate gamma correction in a way which is faster than true gamma whilst still looking better than having none. You must have GAMMA defined to enable FAKE_GAMMA.
CURVATURE distorts the screen by CURVATURE_X and CURVATURE_Y. Curvature slows things down a lot.
By default the shader uses linear blending horizontally. If you find this too blury, enable SHARPER.
BLOOM_FACTOR controls the increase in width for bright scanlines.
MASK_TYPE defines what, if any, shadow mask to use. MASK_BRIGHTNESS defines how much the mask type darkens the screen.
*/
#pragma parameter CURVATURE_X "Screen curvature - horizontal" 0.10 0.0 1.0 0.01
#pragma parameter CURVATURE_Y "Screen curvature - vertical" 0.15 0.0 1.0 0.01
#pragma parameter MASK_BRIGHTNESS "Mask brightness" 0.70 0.0 1.0 0.01
#pragma parameter SCANLINE_WEIGHT "Scanline weight" 6.0 0.0 15.0 0.1
#pragma parameter SCANLINE_GAP_BRIGHTNESS "Scanline gap brightness" 0.12 0.0 1.0 0.01
#pragma parameter BLOOM_FACTOR "Bloom factor" 1.5 0.0 5.0 0.01
#pragma parameter INPUT_GAMMA "Input gamma" 2.4 0.0 5.0 0.01
#pragma parameter OUTPUT_GAMMA "Output gamma" 2.2 0.0 5.0 0.01
// Haven't put these as parameters as it would slow the code down.
#define SCANLINES
#define MULTISAMPLE
#define GAMMA
//#define FAKE_GAMMA
//#define CURVATURE
//#define SHARPER
// MASK_TYPE: 0 = none, 1 = green/magenta, 2 = trinitron(ish)
#define MASK_TYPE 2
#ifdef GL_ES
#define COMPAT_PRECISION mediump
precision mediump float;
#else
#define COMPAT_PRECISION
#endif
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float CURVATURE_X;
uniform COMPAT_PRECISION float CURVATURE_Y;
uniform COMPAT_PRECISION float MASK_BRIGHTNESS;
uniform COMPAT_PRECISION float SCANLINE_WEIGHT;
uniform COMPAT_PRECISION float SCANLINE_GAP_BRIGHTNESS;
uniform COMPAT_PRECISION float BLOOM_FACTOR;
uniform COMPAT_PRECISION float INPUT_GAMMA;
uniform COMPAT_PRECISION float OUTPUT_GAMMA;
#else
#define CURVATURE_X 0.05
#define CURVATURE_Y 0.1
#define MASK_BRIGHTNESS 0.80
#define SCANLINE_WEIGHT 6.0
#define SCANLINE_GAP_BRIGHTNESS 0.12
#define BLOOM_FACTOR 3.5
#define INPUT_GAMMA 2.4
#define OUTPUT_GAMMA 2.2
#endif
/* COMPATIBILITY
- GLSL compilers
*/
//uniform vec2 TextureSize;
#if defined(CURVATURE)
varying vec2 screenScale;
#endif
varying vec2 TEX0;
varying float filterWidth;
#if defined(VERTEX)
//uniform mat4 MVPMatrix;
//attribute vec4 VertexCoord;
//attribute vec2 TexCoord;
//uniform vec2 InputSize;
//uniform vec2 OutputSize;
void main()
{
#if defined(CURVATURE)
screenScale = vec2(1.0, 1.0); //TextureSize / InputSize;
#endif
filterWidth = (768.0 / 192.0) / 3.0;
TEX0 = vec2(gl_MultiTexCoord0.x, 1.0-gl_MultiTexCoord0.y)*1.0001;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
#elif defined(FRAGMENT)
uniform sampler2D Texture;
#if defined(CURVATURE)
vec2 Distort(vec2 coord)
{
vec2 CURVATURE_DISTORTION = vec2(CURVATURE_X, CURVATURE_Y);
// Barrel distortion shrinks the display area a bit, this will allow us to counteract that.
vec2 barrelScale = 1.0 - (0.23 * CURVATURE_DISTORTION);
coord *= screenScale;
coord -= vec2(0.5);
float rsq = coord.x * coord.x + coord.y * coord.y;
coord += coord * (CURVATURE_DISTORTION * rsq);
coord *= barrelScale;
if (abs(coord.x) >= 0.5 || abs(coord.y) >= 0.5)
coord = vec2(-1.0); // If out of bounds, return an invalid value.
else
{
coord += vec2(0.5);
coord /= screenScale;
}
return coord;
}
#endif
float CalcScanLineWeight(float dist)
{
return max(1.0-dist*dist*SCANLINE_WEIGHT, SCANLINE_GAP_BRIGHTNESS);
}
float CalcScanLine(float dy)
{
float scanLineWeight = CalcScanLineWeight(dy);
#if defined(MULTISAMPLE)
scanLineWeight += CalcScanLineWeight(dy-filterWidth);
scanLineWeight += CalcScanLineWeight(dy+filterWidth);
scanLineWeight *= 0.3333333;
#endif
return scanLineWeight;
}
void main()
{
vec2 TextureSize = vec2(256.0, 192.0);
#if defined(CURVATURE)
vec2 texcoord = Distort(TEX0);
if (texcoord.x < 0.0)
gl_FragColor = vec4(0.0);
else
#else
vec2 texcoord = TEX0;
#endif
{
vec2 texcoordInPixels = texcoord * TextureSize;
#if defined(SHARPER)
vec2 tempCoord = floor(texcoordInPixels) + 0.5;
vec2 coord = tempCoord / TextureSize;
vec2 deltas = texcoordInPixels - tempCoord;
float scanLineWeight = CalcScanLine(deltas.y);
vec2 signs = sign(deltas);
deltas.x *= 2.0;
deltas = deltas * deltas;
deltas.y = deltas.y * deltas.y;
deltas.x *= 0.5;
deltas.y *= 8.0;
deltas /= TextureSize;
deltas *= signs;
vec2 tc = coord + deltas;
#else
float tempY = floor(texcoordInPixels.y) + 0.5;
float yCoord = tempY / TextureSize.y;
float dy = texcoordInPixels.y - tempY;
float scanLineWeight = CalcScanLine(dy);
float signY = sign(dy);
dy = dy * dy;
dy = dy * dy;
dy *= 8.0;
dy /= TextureSize.y;
dy *= signY;
vec2 tc = vec2(texcoord.x, yCoord + dy);
#endif
vec3 colour = texture2D(Texture, tc).rgb;
#if defined(SCANLINES)
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = colour * colour;
#else
colour = pow(colour, vec3(INPUT_GAMMA));
#endif
#endif
scanLineWeight *= BLOOM_FACTOR;
colour *= scanLineWeight;
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = sqrt(colour);
#else
colour = pow(colour, vec3(1.0/OUTPUT_GAMMA));
#endif
#endif
#endif
#if MASK_TYPE == 0
gl_FragColor = vec4(colour, 1.0);
#else
#if MASK_TYPE == 1
float whichMask = fract((gl_FragCoord.x*1.0001) * 0.5);
vec3 mask;
if (whichMask < 0.5)
mask = vec3(MASK_BRIGHTNESS, 1.0, MASK_BRIGHTNESS);
else
mask = vec3(1.0, MASK_BRIGHTNESS, 1.0);
#elif MASK_TYPE == 2
float whichMask = fract((gl_FragCoord.x*1.0001) * 0.3333333);
vec3 mask = vec3(MASK_BRIGHTNESS, MASK_BRIGHTNESS, MASK_BRIGHTNESS);
if (whichMask < 0.3333333)
mask.x = 1.0;
else if (whichMask < 0.6666666)
mask.y = 1.0;
else
mask.z = 1.0;
#endif
gl_FragColor = vec4(colour * mask, 1.0);
#endif
}
}
#endif

View File

@@ -1,234 +0,0 @@
/*
crt-pi - A Raspberry Pi friendly CRT shader.
Copyright (C) 2015-2016 davej
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
Notes:
This shader is designed to work well on Raspberry Pi GPUs (i.e. 1080P @ 60Hz on a game with a 4:3 aspect ratio). It pushes the Pi's GPU hard and enabling some features will slow it down so that it is no longer able to match 1080P @ 60Hz. You will need to overclock your Pi to the fastest setting in raspi-config to get the best results from this shader: 'Pi2' for Pi2 and 'Turbo' for original Pi and Pi Zero. Note: Pi2s are slower at running the shader than other Pis, this seems to be down to Pi2s lower maximum memory speed. Pi2s don't quite manage 1080P @ 60Hz - they drop about 1 in 1000 frames. You probably won't notice this, but if you do, try enabling FAKE_GAMMA.
SCANLINES enables scanlines. You'll almost certainly want to use it with MULTISAMPLE to reduce moire effects. SCANLINE_WEIGHT defines how wide scanlines are (it is an inverse value so a higher number = thinner lines). SCANLINE_GAP_BRIGHTNESS defines how dark the gaps between the scan lines are. Darker gaps between scan lines make moire effects more likely.
GAMMA enables gamma correction using the values in INPUT_GAMMA and OUTPUT_GAMMA. FAKE_GAMMA causes it to ignore the values in INPUT_GAMMA and OUTPUT_GAMMA and approximate gamma correction in a way which is faster than true gamma whilst still looking better than having none. You must have GAMMA defined to enable FAKE_GAMMA.
CURVATURE distorts the screen by CURVATURE_X and CURVATURE_Y. Curvature slows things down a lot.
By default the shader uses linear blending horizontally. If you find this too blury, enable SHARPER.
BLOOM_FACTOR controls the increase in width for bright scanlines.
MASK_TYPE defines what, if any, shadow mask to use. MASK_BRIGHTNESS defines how much the mask type darkens the screen.
*/
#pragma parameter CURVATURE_X "Screen curvature - horizontal" 0.10 0.0 1.0 0.01
#pragma parameter CURVATURE_Y "Screen curvature - vertical" 0.15 0.0 1.0 0.01
#pragma parameter MASK_BRIGHTNESS "Mask brightness" 0.70 0.0 1.0 0.01
#pragma parameter SCANLINE_WEIGHT "Scanline weight" 6.0 0.0 15.0 0.1
#pragma parameter SCANLINE_GAP_BRIGHTNESS "Scanline gap brightness" 0.12 0.0 1.0 0.01
#pragma parameter BLOOM_FACTOR "Bloom factor" 1.5 0.0 5.0 0.01
#pragma parameter INPUT_GAMMA "Input gamma" 2.4 0.0 5.0 0.01
#pragma parameter OUTPUT_GAMMA "Output gamma" 2.2 0.0 5.0 0.01
// Haven't put these as parameters as it would slow the code down.
#define SCANLINES
#define MULTISAMPLE
#define GAMMA
//#define FAKE_GAMMA
//#define CURVATURE
//#define SHARPER
// MASK_TYPE: 0 = none, 1 = green/magenta, 2 = trinitron(ish)
#define MASK_TYPE 2
#ifdef GL_ES
#define COMPAT_PRECISION mediump
precision mediump float;
#else
#define COMPAT_PRECISION
#endif
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float CURVATURE_X;
uniform COMPAT_PRECISION float CURVATURE_Y;
uniform COMPAT_PRECISION float MASK_BRIGHTNESS;
uniform COMPAT_PRECISION float SCANLINE_WEIGHT;
uniform COMPAT_PRECISION float SCANLINE_GAP_BRIGHTNESS;
uniform COMPAT_PRECISION float BLOOM_FACTOR;
uniform COMPAT_PRECISION float INPUT_GAMMA;
uniform COMPAT_PRECISION float OUTPUT_GAMMA;
#else
#define CURVATURE_X 0.05
#define CURVATURE_Y 0.1
#define MASK_BRIGHTNESS 0.80
#define SCANLINE_WEIGHT 6.0
#define SCANLINE_GAP_BRIGHTNESS 0.12
#define BLOOM_FACTOR 3.5
#define INPUT_GAMMA 2.4
#define OUTPUT_GAMMA 2.2
#endif
/* COMPATIBILITY
- GLSL compilers
*/
//uniform vec2 TextureSize;
#if defined(CURVATURE)
varying vec2 screenScale;
#endif
varying vec2 TEX0;
varying float filterWidth;
#if defined(VERTEX)
//uniform mat4 MVPMatrix;
//attribute vec4 VertexCoord;
//attribute vec2 TexCoord;
//uniform vec2 InputSize;
//uniform vec2 OutputSize;
void main()
{
#if defined(CURVATURE)
screenScale = vec2(1.0, 1.0); //TextureSize / InputSize;
#endif
filterWidth = (768.0 / 240.0) / 3.0;
TEX0 = vec2(gl_MultiTexCoord0.x, 1.0-gl_MultiTexCoord0.y)*1.0001;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
#elif defined(FRAGMENT)
uniform sampler2D Texture;
#if defined(CURVATURE)
vec2 Distort(vec2 coord)
{
vec2 CURVATURE_DISTORTION = vec2(CURVATURE_X, CURVATURE_Y);
// Barrel distortion shrinks the display area a bit, this will allow us to counteract that.
vec2 barrelScale = 1.0 - (0.23 * CURVATURE_DISTORTION);
coord *= screenScale;
coord -= vec2(0.5);
float rsq = coord.x * coord.x + coord.y * coord.y;
coord += coord * (CURVATURE_DISTORTION * rsq);
coord *= barrelScale;
if (abs(coord.x) >= 0.5 || abs(coord.y) >= 0.5)
coord = vec2(-1.0); // If out of bounds, return an invalid value.
else
{
coord += vec2(0.5);
coord /= screenScale;
}
return coord;
}
#endif
float CalcScanLineWeight(float dist)
{
return max(1.0-dist*dist*SCANLINE_WEIGHT, SCANLINE_GAP_BRIGHTNESS);
}
float CalcScanLine(float dy)
{
float scanLineWeight = CalcScanLineWeight(dy);
#if defined(MULTISAMPLE)
scanLineWeight += CalcScanLineWeight(dy-filterWidth);
scanLineWeight += CalcScanLineWeight(dy+filterWidth);
scanLineWeight *= 0.3333333;
#endif
return scanLineWeight;
}
void main()
{
vec2 TextureSize = vec2(320.0, 240.0);
#if defined(CURVATURE)
vec2 texcoord = Distort(TEX0);
if (texcoord.x < 0.0)
gl_FragColor = vec4(0.0);
else
#else
vec2 texcoord = TEX0;
#endif
{
vec2 texcoordInPixels = texcoord * TextureSize;
#if defined(SHARPER)
vec2 tempCoord = floor(texcoordInPixels) + 0.5;
vec2 coord = tempCoord / TextureSize;
vec2 deltas = texcoordInPixels - tempCoord;
float scanLineWeight = CalcScanLine(deltas.y);
vec2 signs = sign(deltas);
deltas.x *= 2.0;
deltas = deltas * deltas;
deltas.y = deltas.y * deltas.y;
deltas.x *= 0.5;
deltas.y *= 8.0;
deltas /= TextureSize;
deltas *= signs;
vec2 tc = coord + deltas;
#else
float tempY = floor(texcoordInPixels.y) + 0.5;
float yCoord = tempY / TextureSize.y;
float dy = texcoordInPixels.y - tempY;
float scanLineWeight = CalcScanLine(dy);
float signY = sign(dy);
dy = dy * dy;
dy = dy * dy;
dy *= 8.0;
dy /= TextureSize.y;
dy *= signY;
vec2 tc = vec2(texcoord.x, yCoord + dy);
#endif
vec3 colour = texture2D(Texture, tc).rgb;
#if defined(SCANLINES)
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = colour * colour;
#else
colour = pow(colour, vec3(INPUT_GAMMA));
#endif
#endif
scanLineWeight *= BLOOM_FACTOR;
colour *= scanLineWeight;
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = sqrt(colour);
#else
colour = pow(colour, vec3(1.0/OUTPUT_GAMMA));
#endif
#endif
#endif
#if MASK_TYPE == 0
gl_FragColor = vec4(colour, 1.0);
#else
#if MASK_TYPE == 1
float whichMask = fract((gl_FragCoord.x*1.0001) * 0.5);
vec3 mask;
if (whichMask < 0.5)
mask = vec3(MASK_BRIGHTNESS, 1.0, MASK_BRIGHTNESS);
else
mask = vec3(1.0, MASK_BRIGHTNESS, 1.0);
#elif MASK_TYPE == 2
float whichMask = fract((gl_FragCoord.x*1.0001) * 0.3333333);
vec3 mask = vec3(MASK_BRIGHTNESS, MASK_BRIGHTNESS, MASK_BRIGHTNESS);
if (whichMask < 0.3333333)
mask.x = 1.0;
else if (whichMask < 0.6666666)
mask.y = 1.0;
else
mask.z = 1.0;
#endif
gl_FragColor = vec4(colour * mask, 1.0);
#endif
}
}
#endif

View File

@@ -0,0 +1,157 @@
#version 330 core
// Configuración
#define SCANLINES
#define MULTISAMPLE
#define GAMMA
//#define FAKE_GAMMA
//#define CURVATURE
//#define SHARPER
#define MASK_TYPE 2
#define CURVATURE_X 0.05
#define CURVATURE_Y 0.1
#define MASK_BRIGHTNESS 0.80
#define SCANLINE_WEIGHT 6.0
#define SCANLINE_GAP_BRIGHTNESS 0.12
#define BLOOM_FACTOR 3.5
#define INPUT_GAMMA 2.4
#define OUTPUT_GAMMA 2.2
// Inputs desde vertex shader
in vec2 vTexCoord;
in float vFilterWidth;
#if defined(CURVATURE)
in vec2 vScreenScale;
#endif
// Output
out vec4 FragColor;
// Uniforms
uniform sampler2D Texture;
uniform vec2 TextureSize;
#if defined(CURVATURE)
vec2 Distort(vec2 coord)
{
vec2 CURVATURE_DISTORTION = vec2(CURVATURE_X, CURVATURE_Y);
vec2 barrelScale = 1.0 - (0.23 * CURVATURE_DISTORTION);
coord *= vScreenScale;
coord -= vec2(0.5);
float rsq = coord.x * coord.x + coord.y * coord.y;
coord += coord * (CURVATURE_DISTORTION * rsq);
coord *= barrelScale;
if (abs(coord.x) >= 0.5 || abs(coord.y) >= 0.5)
coord = vec2(-1.0);
else
{
coord += vec2(0.5);
coord /= vScreenScale;
}
return coord;
}
#endif
float CalcScanLineWeight(float dist)
{
return max(1.0 - dist * dist * SCANLINE_WEIGHT, SCANLINE_GAP_BRIGHTNESS);
}
float CalcScanLine(float dy)
{
float scanLineWeight = CalcScanLineWeight(dy);
#if defined(MULTISAMPLE)
scanLineWeight += CalcScanLineWeight(dy - vFilterWidth);
scanLineWeight += CalcScanLineWeight(dy + vFilterWidth);
scanLineWeight *= 0.3333333;
#endif
return scanLineWeight;
}
void main()
{
#if defined(CURVATURE)
vec2 texcoord = Distort(vTexCoord);
if (texcoord.x < 0.0) {
FragColor = vec4(0.0);
return;
}
#else
vec2 texcoord = vTexCoord;
#endif
vec2 texcoordInPixels = texcoord * TextureSize;
#if defined(SHARPER)
vec2 tempCoord = floor(texcoordInPixels) + 0.5;
vec2 coord = tempCoord / TextureSize;
vec2 deltas = texcoordInPixels - tempCoord;
float scanLineWeight = CalcScanLine(deltas.y);
vec2 signs = sign(deltas);
deltas.x *= 2.0;
deltas = deltas * deltas;
deltas.y = deltas.y * deltas.y;
deltas.x *= 0.5;
deltas.y *= 8.0;
deltas /= TextureSize;
deltas *= signs;
vec2 tc = coord + deltas;
#else
float tempY = floor(texcoordInPixels.y) + 0.5;
float yCoord = tempY / TextureSize.y;
float dy = texcoordInPixels.y - tempY;
float scanLineWeight = CalcScanLine(dy);
float signY = sign(dy);
dy = dy * dy;
dy = dy * dy;
dy *= 8.0;
dy /= TextureSize.y;
dy *= signY;
vec2 tc = vec2(texcoord.x, yCoord + dy);
#endif
vec3 colour = texture(Texture, tc).rgb;
#if defined(SCANLINES)
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = colour * colour;
#else
colour = pow(colour, vec3(INPUT_GAMMA));
#endif
#endif
scanLineWeight *= BLOOM_FACTOR;
colour *= scanLineWeight;
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = sqrt(colour);
#else
colour = pow(colour, vec3(1.0 / OUTPUT_GAMMA));
#endif
#endif
#endif
#if MASK_TYPE == 0
FragColor = vec4(colour, 1.0);
#elif MASK_TYPE == 1
float whichMask = fract(gl_FragCoord.x * 0.5);
vec3 mask;
if (whichMask < 0.5)
mask = vec3(MASK_BRIGHTNESS, 1.0, MASK_BRIGHTNESS);
else
mask = vec3(1.0, MASK_BRIGHTNESS, 1.0);
FragColor = vec4(colour * mask, 1.0);
#elif MASK_TYPE == 2
float whichMask = fract(gl_FragCoord.x * 0.3333333);
vec3 mask = vec3(MASK_BRIGHTNESS, MASK_BRIGHTNESS, MASK_BRIGHTNESS);
if (whichMask < 0.3333333)
mask.x = 1.0;
else if (whichMask < 0.6666666)
mask.y = 1.0;
else
mask.z = 1.0;
FragColor = vec4(colour * mask, 1.0);
#endif
}

View File

@@ -0,0 +1,160 @@
#version 300 es
// OpenGL ES 3.0 - Compatible con Raspberry Pi 5
precision highp float;
// Configuración
#define SCANLINES
#define MULTISAMPLE
#define GAMMA
//#define FAKE_GAMMA
//#define CURVATURE
//#define SHARPER
#define MASK_TYPE 2
#define CURVATURE_X 0.05
#define CURVATURE_Y 0.1
#define MASK_BRIGHTNESS 0.80
#define SCANLINE_WEIGHT 6.0
#define SCANLINE_GAP_BRIGHTNESS 0.12
#define BLOOM_FACTOR 3.5
#define INPUT_GAMMA 2.4
#define OUTPUT_GAMMA 2.2
// Inputs desde vertex shader
in vec2 vTexCoord;
in float vFilterWidth;
#if defined(CURVATURE)
in vec2 vScreenScale;
#endif
// Output
out vec4 FragColor;
// Uniforms
uniform sampler2D Texture;
uniform vec2 TextureSize;
#if defined(CURVATURE)
vec2 Distort(vec2 coord)
{
vec2 CURVATURE_DISTORTION = vec2(CURVATURE_X, CURVATURE_Y);
vec2 barrelScale = vec2(1.0) - (0.23 * CURVATURE_DISTORTION);
coord *= vScreenScale;
coord -= vec2(0.5);
float rsq = coord.x * coord.x + coord.y * coord.y;
coord += coord * (CURVATURE_DISTORTION * rsq);
coord *= barrelScale;
if (abs(coord.x) >= 0.5 || abs(coord.y) >= 0.5)
coord = vec2(-1.0);
else
{
coord += vec2(0.5);
coord /= vScreenScale;
}
return coord;
}
#endif
float CalcScanLineWeight(float dist)
{
return max(1.0 - dist * dist * SCANLINE_WEIGHT, SCANLINE_GAP_BRIGHTNESS);
}
float CalcScanLine(float dy)
{
float scanLineWeight = CalcScanLineWeight(dy);
#if defined(MULTISAMPLE)
scanLineWeight += CalcScanLineWeight(dy - vFilterWidth);
scanLineWeight += CalcScanLineWeight(dy + vFilterWidth);
scanLineWeight *= 0.3333333;
#endif
return scanLineWeight;
}
void main()
{
#if defined(CURVATURE)
vec2 texcoord = Distort(vTexCoord);
if (texcoord.x < 0.0) {
FragColor = vec4(0.0);
return;
}
#else
vec2 texcoord = vTexCoord;
#endif
vec2 texcoordInPixels = texcoord * TextureSize;
#if defined(SHARPER)
vec2 tempCoord = floor(texcoordInPixels) + vec2(0.5);
vec2 coord = tempCoord / TextureSize;
vec2 deltas = texcoordInPixels - tempCoord;
float scanLineWeight = CalcScanLine(deltas.y);
vec2 signs = sign(deltas);
deltas.x *= 2.0;
deltas = deltas * deltas;
deltas.y = deltas.y * deltas.y;
deltas.x *= 0.5;
deltas.y *= 8.0;
deltas /= TextureSize;
deltas *= signs;
vec2 tc = coord + deltas;
#else
float tempY = floor(texcoordInPixels.y) + 0.5;
float yCoord = tempY / TextureSize.y;
float dy = texcoordInPixels.y - tempY;
float scanLineWeight = CalcScanLine(dy);
float signY = sign(dy);
dy = dy * dy;
dy = dy * dy;
dy *= 8.0;
dy /= TextureSize.y;
dy *= signY;
vec2 tc = vec2(texcoord.x, yCoord + dy);
#endif
vec3 colour = texture(Texture, tc).rgb;
#if defined(SCANLINES)
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = colour * colour;
#else
colour = pow(colour, vec3(INPUT_GAMMA));
#endif
#endif
scanLineWeight *= BLOOM_FACTOR;
colour *= scanLineWeight;
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = sqrt(colour);
#else
colour = pow(colour, vec3(1.0 / OUTPUT_GAMMA));
#endif
#endif
#endif
#if MASK_TYPE == 0
FragColor = vec4(colour, 1.0);
#elif MASK_TYPE == 1
float whichMask = fract(gl_FragCoord.x * 0.5);
vec3 mask;
if (whichMask < 0.5)
mask = vec3(MASK_BRIGHTNESS, 1.0, MASK_BRIGHTNESS);
else
mask = vec3(1.0, MASK_BRIGHTNESS, 1.0);
FragColor = vec4(colour * mask, 1.0);
#elif MASK_TYPE == 2
float whichMask = fract(gl_FragCoord.x * 0.3333333);
vec3 mask = vec3(MASK_BRIGHTNESS, MASK_BRIGHTNESS, MASK_BRIGHTNESS);
if (whichMask < 0.3333333)
mask.x = 1.0;
else if (whichMask < 0.6666666)
mask.y = 1.0;
else
mask.z = 1.0;
FragColor = vec4(colour * mask, 1.0);
#endif
}

View File

@@ -0,0 +1,48 @@
#version 330 core
// Configuración
#define SCANLINES
#define MULTISAMPLE
#define GAMMA
//#define FAKE_GAMMA
//#define CURVATURE
//#define SHARPER
#define MASK_TYPE 2
#define CURVATURE_X 0.05
#define CURVATURE_Y 0.1
#define MASK_BRIGHTNESS 0.80
#define SCANLINE_WEIGHT 6.0
#define SCANLINE_GAP_BRIGHTNESS 0.12
#define BLOOM_FACTOR 3.5
#define INPUT_GAMMA 2.4
#define OUTPUT_GAMMA 2.2
// Inputs (desde VAO)
layout(location = 0) in vec2 aPosition;
layout(location = 1) in vec2 aTexCoord;
// Outputs al fragment shader
out vec2 vTexCoord;
out float vFilterWidth;
#if defined(CURVATURE)
out vec2 vScreenScale;
#endif
// Uniforms
uniform vec2 TextureSize;
void main()
{
#if defined(CURVATURE)
vScreenScale = vec2(1.0, 1.0);
#endif
// Calcula filterWidth dinámicamente basándose en la altura de la textura
vFilterWidth = (768.0 / TextureSize.y) / 3.0;
// Pasar coordenadas de textura (invertir Y para SDL)
vTexCoord = vec2(aTexCoord.x, 1.0 - aTexCoord.y) * 1.0001;
// Posición del vértice (ya en espacio de clip [-1, 1])
gl_Position = vec4(aPosition, 0.0, 1.0);
}

View File

@@ -0,0 +1,51 @@
#version 300 es
// OpenGL ES 3.0 - Compatible con Raspberry Pi 5
precision highp float;
// Configuración
#define SCANLINES
#define MULTISAMPLE
#define GAMMA
//#define FAKE_GAMMA
//#define CURVATURE
//#define SHARPER
#define MASK_TYPE 2
#define CURVATURE_X 0.05
#define CURVATURE_Y 0.1
#define MASK_BRIGHTNESS 0.80
#define SCANLINE_WEIGHT 6.0
#define SCANLINE_GAP_BRIGHTNESS 0.12
#define BLOOM_FACTOR 3.5
#define INPUT_GAMMA 2.4
#define OUTPUT_GAMMA 2.2
// Inputs (desde VAO)
layout(location = 0) in vec2 aPosition;
layout(location = 1) in vec2 aTexCoord;
// Outputs al fragment shader
out vec2 vTexCoord;
out float vFilterWidth;
#if defined(CURVATURE)
out vec2 vScreenScale;
#endif
// Uniforms
uniform vec2 TextureSize;
void main()
{
#if defined(CURVATURE)
vScreenScale = vec2(1.0, 1.0);
#endif
// Calcula filterWidth dinámicamente basándose en la altura de la textura
vFilterWidth = (768.0 / TextureSize.y) / 3.0;
// Pasar coordenadas de textura (invertir Y para SDL)
vTexCoord = vec2(aTexCoord.x, 1.0 - aTexCoord.y) * 1.0001;
// Posición del vértice (ya en espacio de clip [-1, 1])
gl_Position = vec4(aPosition, 0.0, 1.0);
}

View File

@@ -360,8 +360,10 @@ bool Director::setFileList() {
Asset::get()->add(prefix + "/data/palette/steam-lords.pal", AssetType::PALETTE); Asset::get()->add(prefix + "/data/palette/steam-lords.pal", AssetType::PALETTE);
// Shaders // Shaders
Asset::get()->add(prefix + "/data/shaders/crtpi_192.glsl", AssetType::DATA); Asset::get()->add(prefix + "/data/shaders/crtpi_vertex.glsl", AssetType::DATA);
Asset::get()->add(prefix + "/data/shaders/crtpi_240.glsl", AssetType::DATA); Asset::get()->add(prefix + "/data/shaders/crtpi_fragment.glsl", AssetType::DATA);
Asset::get()->add(prefix + "/data/shaders/crtpi_vertex_es.glsl", AssetType::DATA);
Asset::get()->add(prefix + "/data/shaders/crtpi_fragment_es.glsl", AssetType::DATA);
// Datos // Datos
Asset::get()->add(prefix + "/data/input/gamecontrollerdb.txt", AssetType::DATA); Asset::get()->add(prefix + "/data/input/gamecontrollerdb.txt", AssetType::DATA);

View File

@@ -1,266 +0,0 @@
#include "external/jail_shader.h"
#include <SDL3/SDL.h>
#include <cstring> // Para strncmp
#include <iostream> // Para basic_ostream, operator<<, endl, cout
#include <stdexcept> // Para runtime_error
#include <vector> // Para vector
#ifdef __APPLE__
#include <OpenGL/OpenGL.h> // Para OpenGL en macOS
#include "CoreFoundation/CoreFoundation.h" // Para Core Foundation en macOS
#if ESSENTIAL_GL_PRACTICES_SUPPORT_GL3
#include <OpenGL/gl3.h> // Para OpenGL 3 en macOS
#else // NO ESSENTIAL_GL_PRACTICES_SUPPORT_GL3
#include <OpenGL/gl.h> // Para OpenGL (compatibilidad) en macOS
#endif // ESSENTIAL_GL_PRACTICES_SUPPORT_GL3
#else // SI NO ES __APPLE__
#include <SDL3/SDL_opengl.h> // Para GLuint, glTexCoord2f, glVertex2f, GLfloat
#endif // __APPLE__
namespace shader {
SDL_Window* win = nullptr;
SDL_Renderer* renderer = nullptr;
GLuint programId = 0;
SDL_Texture* backBuffer = nullptr;
SDL_FPoint win_size = {320 * 4, 256 * 4};
SDL_FPoint tex_size = {320, 256};
bool usingOpenGL = false;
#ifndef __APPLE__
// Declaración de funciones de extensión de OpenGL (evitando GLEW)
PFNGLCREATESHADERPROC glCreateShader;
PFNGLSHADERSOURCEPROC glShaderSource;
PFNGLCOMPILESHADERPROC glCompileShader;
PFNGLGETSHADERIVPROC glGetShaderiv;
PFNGLGETSHADERINFOLOGPROC glGetShaderInfoLog;
PFNGLDELETESHADERPROC glDeleteShader;
PFNGLATTACHSHADERPROC glAttachShader;
PFNGLCREATEPROGRAMPROC glCreateProgram;
PFNGLLINKPROGRAMPROC glLinkProgram;
PFNGLVALIDATEPROGRAMPROC glValidateProgram;
PFNGLGETPROGRAMIVPROC glGetProgramiv;
PFNGLGETPROGRAMINFOLOGPROC glGetProgramInfoLog;
PFNGLUSEPROGRAMPROC glUseProgram;
bool initGLExtensions() {
glCreateShader = (PFNGLCREATESHADERPROC)SDL_GL_GetProcAddress("glCreateShader");
glShaderSource = (PFNGLSHADERSOURCEPROC)SDL_GL_GetProcAddress("glShaderSource");
glCompileShader = (PFNGLCOMPILESHADERPROC)SDL_GL_GetProcAddress("glCompileShader");
glGetShaderiv = (PFNGLGETSHADERIVPROC)SDL_GL_GetProcAddress("glGetShaderiv");
glGetShaderInfoLog = (PFNGLGETSHADERINFOLOGPROC)SDL_GL_GetProcAddress("glGetShaderInfoLog");
glDeleteShader = (PFNGLDELETESHADERPROC)SDL_GL_GetProcAddress("glDeleteShader");
glAttachShader = (PFNGLATTACHSHADERPROC)SDL_GL_GetProcAddress("glAttachShader");
glCreateProgram = (PFNGLCREATEPROGRAMPROC)SDL_GL_GetProcAddress("glCreateProgram");
glLinkProgram = (PFNGLLINKPROGRAMPROC)SDL_GL_GetProcAddress("glLinkProgram");
glValidateProgram = (PFNGLVALIDATEPROGRAMPROC)SDL_GL_GetProcAddress("glValidateProgram");
glGetProgramiv = (PFNGLGETPROGRAMIVPROC)SDL_GL_GetProcAddress("glGetProgramiv");
glGetProgramInfoLog = (PFNGLGETPROGRAMINFOLOGPROC)SDL_GL_GetProcAddress("glGetProgramInfoLog");
glUseProgram = (PFNGLUSEPROGRAMPROC)SDL_GL_GetProcAddress("glUseProgram");
return glCreateShader && glShaderSource && glCompileShader && glGetShaderiv &&
glGetShaderInfoLog && glDeleteShader && glAttachShader && glCreateProgram &&
glLinkProgram && glValidateProgram && glGetProgramiv && glGetProgramInfoLog &&
glUseProgram;
}
#endif
// Función para compilar un shader a partir de un std::string
GLuint compileShader(const std::string& source, GLuint shaderType) {
if (source.empty()) {
throw std::runtime_error("ERROR FATAL: El código fuente del shader está vacío.");
}
// Crear identificador del shader
GLuint resultado = glCreateShader(shaderType);
// Agregar una directiva según el tipo de shader
std::string directiva = (shaderType == GL_VERTEX_SHADER)
? "#define VERTEX\n"
: "#define FRAGMENT\n";
const char* sources[2] = {directiva.c_str(), source.c_str()};
// Especificar el código fuente del shader
glShaderSource(resultado, 2, sources, nullptr);
// Compilar el shader
glCompileShader(resultado);
// Verificar si la compilación fue exitosa
GLint compiladoCorrectamente = GL_FALSE;
glGetShaderiv(resultado, GL_COMPILE_STATUS, &compiladoCorrectamente);
if (compiladoCorrectamente != GL_TRUE) {
std::cout << "Error en la compilación del shader (" << resultado << ")!" << std::endl;
GLint longitudLog;
glGetShaderiv(resultado, GL_INFO_LOG_LENGTH, &longitudLog);
if (longitudLog > 0) {
std::vector<GLchar> log(longitudLog);
glGetShaderInfoLog(resultado, longitudLog, &longitudLog, log.data());
std::cout << "Registro de compilación del shader: " << log.data() << std::endl;
}
glDeleteShader(resultado);
resultado = 0;
}
return resultado;
}
// Función para compilar un programa de shaders (vertex y fragment) a partir de std::string
GLuint compileProgram(const std::string& vertexShaderSource, const std::string& fragmentShaderSource) {
GLuint idPrograma = glCreateProgram();
// Si el fragment shader está vacío, reutilizamos el código del vertex shader
GLuint idShaderVertice = compileShader(vertexShaderSource, GL_VERTEX_SHADER);
GLuint idShaderFragmento = compileShader(fragmentShaderSource.empty() ? vertexShaderSource : fragmentShaderSource, GL_FRAGMENT_SHADER);
if (idShaderVertice && idShaderFragmento) {
// Asociar los shaders al programa
glAttachShader(idPrograma, idShaderVertice);
glAttachShader(idPrograma, idShaderFragmento);
glLinkProgram(idPrograma);
glValidateProgram(idPrograma);
// Verificar el estado del enlace
GLint longitudLog;
glGetProgramiv(idPrograma, GL_INFO_LOG_LENGTH, &longitudLog);
if (longitudLog > 0) {
std::vector<char> log(longitudLog);
glGetProgramInfoLog(idPrograma, longitudLog, &longitudLog, log.data());
std::cout << "Registro de información del programa:" << std::endl
<< log.data() << std::endl;
}
}
if (idShaderVertice) {
glDeleteShader(idShaderVertice);
}
if (idShaderFragmento) {
glDeleteShader(idShaderFragmento);
}
return idPrograma;
}
bool init(SDL_Window* ventana, SDL_Texture* texturaBackBuffer, const std::string& vertexShader, const std::string& fragmentShader) {
shader::win = ventana;
shader::renderer = SDL_GetRenderer(ventana);
shader::backBuffer = texturaBackBuffer;
SDL_GetWindowSize(ventana, &win_size.x, &win_size.y);
int acceso;
SDL_QueryTexture(texturaBackBuffer, nullptr, &acceso, &tex_size.x, &tex_size.y);
if (acceso != SDL_TEXTUREACCESS_TARGET) {
throw std::runtime_error("ERROR FATAL: La textura debe tener definido SDL_TEXTUREACCESS_TARGET.");
}
SDL_RendererInfo infoRenderer;
SDL_GetRendererInfo(renderer, &infoRenderer);
// Verificar que el renderer sea OpenGL
if (!strncmp(infoRenderer.name, "opengl", 6)) {
#ifndef __APPLE__
if (!initGLExtensions()) {
std::cout << "ADVERTENCIA: No se han podido inicializar las extensiones de OpenGL." << std::endl;
usingOpenGL = false;
return false;
}
#endif
// Compilar el programa de shaders utilizando std::string
programId = compileProgram(vertexShader, fragmentShader);
} else {
std::cout << "ADVERTENCIA: El driver del renderer no es OpenGL." << std::endl;
usingOpenGL = false;
return false;
}
usingOpenGL = true;
return true;
}
void render() {
GLint oldProgramId;
// Establece el color de fondo
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_SetRenderTarget(renderer, nullptr);
SDL_RenderClear(renderer);
if (usingOpenGL) {
SDL_GL_BindTexture(backBuffer, nullptr, nullptr);
if (programId != 0) {
glGetIntegerv(GL_CURRENT_PROGRAM, &oldProgramId);
glUseProgram(programId);
}
// Recupera el tamaño lógico configurado con SDL_RenderSetLogicalSize
int logicalW, logicalH;
SDL_RenderGetLogicalSize(renderer, &logicalW, &logicalH);
if (logicalW == 0 || logicalH == 0) {
logicalW = win_size.x;
logicalH = win_size.y;
}
// Cálculo del viewport
int viewportX = 0, viewportY = 0, viewportW = win_size.x, viewportH = win_size.y;
SDL_bool useIntegerScale = SDL_RenderGetIntegerScale(renderer);
if (useIntegerScale) {
// Calcula el factor de escalado entero máximo que se puede aplicar
int scaleX = win_size.x / logicalW;
int scaleY = win_size.y / logicalH;
int scale = (scaleX < scaleY ? scaleX : scaleY);
if (scale < 1)
scale = 1;
viewportW = logicalW * scale;
viewportH = logicalH * scale;
viewportX = (win_size.x - viewportW) / 2;
viewportY = (win_size.y - viewportH) / 2;
} else {
// Letterboxing: preserva la relación de aspecto usando una escala flotante
float windowAspect = static_cast<float>(win_size.x) / win_size.y;
float logicalAspect = static_cast<float>(logicalW) / logicalH;
if (windowAspect > logicalAspect) {
viewportW = static_cast<int>(logicalAspect * win_size.y);
viewportX = (win_size.x - viewportW) / 2;
} else {
viewportH = static_cast<int>(win_size.x / logicalAspect);
viewportY = (win_size.y - viewportH) / 2;
}
}
glViewport(viewportX, viewportY, viewportW, viewportH);
// Configurar la proyección ortográfica usando el espacio lógico
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Queremos que el origen esté en la esquina superior izquierda del espacio lógico.
glOrtho(0, static_cast<GLdouble>(logicalW), static_cast<GLdouble>(logicalH), 0, -1, 1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// Dibuja el quad con las coordenadas ajustadas.
// Se asignan las coordenadas de textura "normales" para que no quede espejado horizontalmente,
// y se mantiene el flip vertical para que la imagen no aparezca volteada.
glBegin(GL_TRIANGLE_STRIP);
// Vértice superior izquierdo
glTexCoord2f(0.0f, 1.0f);
glVertex2f(0.0f, 0.0f);
// Vértice superior derecho
glTexCoord2f(1.0f, 1.0f);
glVertex2f(static_cast<GLfloat>(logicalW), 0.0f);
// Vértice inferior izquierdo
glTexCoord2f(0.0f, 0.0f);
glVertex2f(0.0f, static_cast<GLfloat>(logicalH));
// Vértice inferior derecho
glTexCoord2f(1.0f, 0.0f);
glVertex2f(static_cast<GLfloat>(logicalW), static_cast<GLfloat>(logicalH));
glEnd();
SDL_GL_SwapWindow(win);
if (programId != 0) {
glUseProgram(oldProgramId);
}
} else {
SDL_RenderCopy(renderer, backBuffer, nullptr, nullptr);
SDL_RenderPresent(renderer);
}
}
} // namespace shader

View File

@@ -1,44 +0,0 @@
#pragma once
#include <SDL3/SDL.h>
#include <string>
// TIPS:
// =======================================================================
// Abans de crear el renderer, cridar a la següent funció:
//
// SDL_SetHint(SDL_HINT_RENDER_DRIVER, "opengl");
//
// Aixó li diu que volem un renderer que use especificament opengl. A més,
// al crear el renderer li tenim que dir que el volem que use acceeració
// per hardware, i que soporte render a textura. Per exemple:
//
// SDL_Renderer *ren = SDL_CreateRenderer(win, -1, SDL_RENDERER_ACCELERATED |
// SDL_RENDERER_TARGETTEXTURE);
//
// Per altra part, al crear la textura tenim que definir que puga ser target
// de renderitzat (SDL_TEXTUREACCESS_TARGET), per exemple:
//
// SDL_Texture *tex = SDL_CreateTexture(renderer, SDL_PIXELFORMAT_ARGB8888,
// SDL_TEXTUREACCESS_TARGET, 320, 240);
//
// Els shaders li'ls passem com una cadena, som nosaltres els que s'encarreguem
// de carregarlos de disc, amb fopen, ifstream, jfile o el que vullgues.
// Si els tens en un std::string, passa-li-la com "cadena.c_str()".
//
// Poden ser els dos el mateix arxiu, com fa libRetro, jo desde dins ja fique
// els defines necessaris. Si es el mateix arxiu, pots no ficar el quart paràmetre.
//
// Els shaders de libRetro no funcionen directament, hi ha que fer algunes modificacions.
//
// El pintat final de la teua escena l'has de fer com si "backBuffer" fora la pantalla.
//
// Ah! una cosa mes: al compilar, en Linux afegir "-lGL", en Windows afegir "-lopengl32".
// En Mac ni idea
namespace shader {
// const bool init(SDL_Window *ventana, SDL_Texture *texturaBackBuffer, const char *vertexShader, const char *fragmentShader = nullptr);
bool init(SDL_Window* ventana, SDL_Texture* texturaBackBuffer, const std::string& vertexShader, const std::string& fragmentShader = "");
void render();
} // namespace shader

View File

@@ -224,7 +224,7 @@ std::string Input::getControllerName(int controller_index) const { return num_ga
int Input::getNumControllers() const { return num_gamepads_; } int Input::getNumControllers() const { return num_gamepads_; }
// Obtiene el indice del controlador a partir de un event.id // Obtiene el indice del controlador a partir de un event.id
int Input::getJoyIndex(int id) const { int Input::getJoyIndex(SDL_JoystickID id) const {
for (int i = 0; i < num_joysticks_; ++i) { for (int i = 0; i < num_joysticks_; ++i) {
if (SDL_GetJoystickID(joysticks_[i]) == id) { if (SDL_GetJoystickID(joysticks_[i]) == id) {
return i; return i;

View File

@@ -128,7 +128,7 @@ class Input {
std::string getControllerName(int controller_index) const; std::string getControllerName(int controller_index) const;
// Obtiene el indice del controlador a partir de un event.id // Obtiene el indice del controlador a partir de un event.id
int getJoyIndex(int id) const; int getJoyIndex(SDL_JoystickID id) const;
// Obtiene el SDL_GamepadButton asignado a un input // Obtiene el SDL_GamepadButton asignado a un input
SDL_GamepadButton getControllerBinding(int controller_index, InputAction input) const; SDL_GamepadButton getControllerBinding(int controller_index, InputAction input) const;

View File

@@ -9,8 +9,8 @@ class SSprite;
struct ItemData { struct ItemData {
std::string tile_set_file; // Ruta al fichero con los gráficos del item std::string tile_set_file; // Ruta al fichero con los gráficos del item
int x; // Posición del item en pantalla float x; // Posición del item en pantalla
int y; // Posición del item en pantalla float y; // Posición del item en pantalla
int tile; // Número de tile dentro de la textura int tile; // Número de tile dentro de la textura
int counter; // Contador inicial. Es el que lo hace cambiar de color int counter; // Contador inicial. Es el que lo hace cambiar de color
Uint8 color1; // Uno de los dos colores que se utiliza para el item Uint8 color1; // Uno de los dos colores que se utiliza para el item
@@ -29,7 +29,7 @@ struct ItemData {
class Item { class Item {
private: private:
// Constantes // Constantes
static constexpr int ITEM_SIZE_ = 8; static constexpr float ITEM_SIZE_ = 8;
// Objetos y punteros // Objetos y punteros
std::shared_ptr<SSprite> sprite_; // SSprite del objeto std::shared_ptr<SSprite> sprite_; // SSprite del objeto

View File

@@ -252,7 +252,7 @@ void Player::move() {
// Si ha tocado alguna rampa mientras camina (sin saltar), asciende // Si ha tocado alguna rampa mientras camina (sin saltar), asciende
if (state_ != PlayerState::JUMPING) { if (state_ != PlayerState::JUMPING) {
const LineVertical LEFT_SIDE = {static_cast<int>(x_), static_cast<int>(y_) + HEIGHT_ - 2, static_cast<int>(y_) + HEIGHT_ - 1}; // Comprueba solo los dos pixels de abajo const LineVertical LEFT_SIDE = {x_, y_ + HEIGHT_ - 2, y_ + HEIGHT_ - 1}; // Comprueba solo los dos pixels de abajo
const int LY = room_->checkLeftSlopes(&LEFT_SIDE); const int LY = room_->checkLeftSlopes(&LEFT_SIDE);
if (LY > -1) { if (LY > -1) {
y_ = LY - HEIGHT_; y_ = LY - HEIGHT_;
@@ -269,8 +269,8 @@ void Player::move() {
else if (vx_ > 0.0f) { else if (vx_ > 0.0f) {
// Crea el rectangulo de proyección en el eje X para ver si colisiona // Crea el rectangulo de proyección en el eje X para ver si colisiona
SDL_FRect proj; SDL_FRect proj;
proj.x = static_cast<int>(x_) + WIDTH_; proj.x = x_ + WIDTH_;
proj.y = static_cast<int>(y_); proj.y = y_;
proj.h = HEIGHT_; proj.h = HEIGHT_;
proj.w = ceil(vx_); // Para evitar que tenga un ancho de 0 pixels proj.w = ceil(vx_); // Para evitar que tenga un ancho de 0 pixels
@@ -292,7 +292,7 @@ void Player::move() {
// Si ha tocado alguna rampa mientras camina (sin saltar), asciende // Si ha tocado alguna rampa mientras camina (sin saltar), asciende
if (state_ != PlayerState::JUMPING) { if (state_ != PlayerState::JUMPING) {
const LineVertical RIGHT_SIDE = {static_cast<int>(x_) + WIDTH_ - 1, static_cast<int>(y_) + HEIGHT_ - 2, static_cast<int>(y_) + HEIGHT_ - 1}; // Comprueba solo los dos pixels de abajo const LineVertical RIGHT_SIDE = {x_ + WIDTH_ - 1, y_ + HEIGHT_ - 2, y_ + HEIGHT_ - 1}; // Comprueba solo los dos pixels de abajo
const int RY = room_->checkRightSlopes(&RIGHT_SIDE); const int RY = room_->checkRightSlopes(&RIGHT_SIDE);
if (RY > -1) { if (RY > -1) {
y_ = RY - HEIGHT_; y_ = RY - HEIGHT_;

View File

@@ -193,7 +193,7 @@ class Player {
void switchBorders(); void switchBorders();
// Obtiene el rectangulo que delimita al jugador // Obtiene el rectangulo que delimita al jugador
SDL_FRect getRect() { return {static_cast<int>(x_), static_cast<int>(y_), WIDTH_, HEIGHT_}; } SDL_FRect getRect() { return {x_, y_, WIDTH_, HEIGHT_}; }
// Obtiene el rectangulo de colision del jugador // Obtiene el rectangulo de colision del jugador
SDL_FRect& getCollider() { return collider_box_; } SDL_FRect& getCollider() { return collider_box_; }

View File

@@ -0,0 +1,462 @@
#include "opengl_shader.h"
#include <SDL3/SDL.h>
#include <cstring>
#include <stdexcept>
#include <vector>
namespace Rendering {
OpenGLShader::~OpenGLShader() {
cleanup();
}
#ifndef __APPLE__
bool OpenGLShader::initGLExtensions() {
glCreateShader = (PFNGLCREATESHADERPROC)SDL_GL_GetProcAddress("glCreateShader");
glShaderSource = (PFNGLSHADERSOURCEPROC)SDL_GL_GetProcAddress("glShaderSource");
glCompileShader = (PFNGLCOMPILESHADERPROC)SDL_GL_GetProcAddress("glCompileShader");
glGetShaderiv = (PFNGLGETSHADERIVPROC)SDL_GL_GetProcAddress("glGetShaderiv");
glGetShaderInfoLog = (PFNGLGETSHADERINFOLOGPROC)SDL_GL_GetProcAddress("glGetShaderInfoLog");
glDeleteShader = (PFNGLDELETESHADERPROC)SDL_GL_GetProcAddress("glDeleteShader");
glAttachShader = (PFNGLATTACHSHADERPROC)SDL_GL_GetProcAddress("glAttachShader");
glCreateProgram = (PFNGLCREATEPROGRAMPROC)SDL_GL_GetProcAddress("glCreateProgram");
glLinkProgram = (PFNGLLINKPROGRAMPROC)SDL_GL_GetProcAddress("glLinkProgram");
glValidateProgram = (PFNGLVALIDATEPROGRAMPROC)SDL_GL_GetProcAddress("glValidateProgram");
glGetProgramiv = (PFNGLGETPROGRAMIVPROC)SDL_GL_GetProcAddress("glGetProgramiv");
glGetProgramInfoLog = (PFNGLGETPROGRAMINFOLOGPROC)SDL_GL_GetProcAddress("glGetProgramInfoLog");
glUseProgram = (PFNGLUSEPROGRAMPROC)SDL_GL_GetProcAddress("glUseProgram");
glDeleteProgram = (PFNGLDELETEPROGRAMPROC)SDL_GL_GetProcAddress("glDeleteProgram");
glGetUniformLocation = (PFNGLGETUNIFORMLOCATIONPROC)SDL_GL_GetProcAddress("glGetUniformLocation");
glUniform2f = (PFNGLUNIFORM2FPROC)SDL_GL_GetProcAddress("glUniform2f");
glGenVertexArrays = (PFNGLGENVERTEXARRAYSPROC)SDL_GL_GetProcAddress("glGenVertexArrays");
glBindVertexArray = (PFNGLBINDVERTEXARRAYPROC)SDL_GL_GetProcAddress("glBindVertexArray");
glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSPROC)SDL_GL_GetProcAddress("glDeleteVertexArrays");
glGenBuffers = (PFNGLGENBUFFERSPROC)SDL_GL_GetProcAddress("glGenBuffers");
glBindBuffer = (PFNGLBINDBUFFERPROC)SDL_GL_GetProcAddress("glBindBuffer");
glBufferData = (PFNGLBUFFERDATAPROC)SDL_GL_GetProcAddress("glBufferData");
glDeleteBuffers = (PFNGLDELETEBUFFERSPROC)SDL_GL_GetProcAddress("glDeleteBuffers");
glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERPROC)SDL_GL_GetProcAddress("glVertexAttribPointer");
glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYPROC)SDL_GL_GetProcAddress("glEnableVertexAttribArray");
return glCreateShader && glShaderSource && glCompileShader && glGetShaderiv &&
glGetShaderInfoLog && glDeleteShader && glAttachShader && glCreateProgram &&
glLinkProgram && glValidateProgram && glGetProgramiv && glGetProgramInfoLog &&
glUseProgram && glDeleteProgram && glGetUniformLocation && glUniform2f &&
glGenVertexArrays && glBindVertexArray && glDeleteVertexArrays &&
glGenBuffers && glBindBuffer && glBufferData && glDeleteBuffers &&
glVertexAttribPointer && glEnableVertexAttribArray;
}
#endif
void OpenGLShader::checkGLError(const char* operation) {
GLenum error = glGetError();
if (error != GL_NO_ERROR) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Error OpenGL en %s: 0x%x", operation, error);
}
}
GLuint OpenGLShader::compileShader(const std::string& source, GLenum shader_type) {
if (source.empty()) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"ERROR: El código fuente del shader está vacío");
return 0;
}
GLuint shader_id = glCreateShader(shader_type);
if (shader_id == 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Error al crear shader");
checkGLError("glCreateShader");
return 0;
}
const char* sources[1] = {source.c_str()};
glShaderSource(shader_id, 1, sources, nullptr);
checkGLError("glShaderSource");
glCompileShader(shader_id);
checkGLError("glCompileShader");
// Verificar compilación
GLint compiled = GL_FALSE;
glGetShaderiv(shader_id, GL_COMPILE_STATUS, &compiled);
if (compiled != GL_TRUE) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Error en compilación del shader");
GLint log_length;
glGetShaderiv(shader_id, GL_INFO_LOG_LENGTH, &log_length);
if (log_length > 0) {
std::vector<char> log(log_length);
glGetShaderInfoLog(shader_id, log_length, &log_length, log.data());
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Log de compilación: %s", log.data());
}
glDeleteShader(shader_id);
return 0;
}
return shader_id;
}
GLuint OpenGLShader::linkProgram(GLuint vertex_shader, GLuint fragment_shader) {
GLuint program = glCreateProgram();
if (program == 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Error al crear programa de shaders");
return 0;
}
glAttachShader(program, vertex_shader);
checkGLError("glAttachShader(vertex)");
glAttachShader(program, fragment_shader);
checkGLError("glAttachShader(fragment)");
glLinkProgram(program);
checkGLError("glLinkProgram");
// Verificar enlace
GLint linked = GL_FALSE;
glGetProgramiv(program, GL_LINK_STATUS, &linked);
if (linked != GL_TRUE) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Error al enlazar programa");
GLint log_length;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
if (log_length > 0) {
std::vector<char> log(log_length);
glGetProgramInfoLog(program, log_length, &log_length, log.data());
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Log de enlace: %s", log.data());
}
glDeleteProgram(program);
return 0;
}
glValidateProgram(program);
checkGLError("glValidateProgram");
return program;
}
void OpenGLShader::createQuadGeometry() {
// Datos del quad: posición (x, y) + coordenadas de textura (u, v)
// Formato: x, y, u, v
float vertices[] = {
// Posición // TexCoords
-1.0f, -1.0f, 0.0f, 0.0f, // Inferior izquierda
1.0f, -1.0f, 1.0f, 0.0f, // Inferior derecha
1.0f, 1.0f, 1.0f, 1.0f, // Superior derecha
-1.0f, 1.0f, 0.0f, 1.0f // Superior izquierda
};
// Índices para dibujar el quad con dos triángulos
unsigned int indices[] = {
0, 1, 2, // Primer triángulo
2, 3, 0 // Segundo triángulo
};
// Generar y configurar VAO
glGenVertexArrays(1, &vao_);
glBindVertexArray(vao_);
checkGLError("glBindVertexArray");
// Generar y configurar VBO
glGenBuffers(1, &vbo_);
glBindBuffer(GL_ARRAY_BUFFER, vbo_);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
checkGLError("glBufferData(VBO)");
// Generar y configurar EBO
glGenBuffers(1, &ebo_);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo_);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
checkGLError("glBufferData(EBO)");
// Atributo 0: Posición (2 floats)
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
checkGLError("glVertexAttribPointer(position)");
// Atributo 1: Coordenadas de textura (2 floats)
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (void*)(2 * sizeof(float)));
glEnableVertexAttribArray(1);
checkGLError("glVertexAttribPointer(texcoord)");
// Desvincular
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
GLuint OpenGLShader::getTextureID(SDL_Texture* texture) {
if (!texture) return 1;
SDL_PropertiesID props = SDL_GetTextureProperties(texture);
GLuint texture_id = 0;
// Intentar obtener ID de textura OpenGL
texture_id = (GLuint)(uintptr_t)SDL_GetPointerProperty(props, "SDL.texture.opengl.texture", nullptr);
if (texture_id == 0) {
texture_id = (GLuint)(uintptr_t)SDL_GetPointerProperty(props, "texture.opengl.texture", nullptr);
}
if (texture_id == 0) {
texture_id = (GLuint)SDL_GetNumberProperty(props, "SDL.texture.opengl.texture", 1);
}
if (texture_id == 0) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"No se pudo obtener ID de textura OpenGL, usando 1 por defecto");
texture_id = 1;
}
return texture_id;
}
bool OpenGLShader::init(SDL_Window* window,
SDL_Texture* texture,
const std::string& vertex_source,
const std::string& fragment_source) {
window_ = window;
back_buffer_ = texture;
renderer_ = SDL_GetRenderer(window);
if (!renderer_) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Error: No se pudo obtener el renderer");
return false;
}
// Obtener tamaños
SDL_GetWindowSize(window_, &window_width_, &window_height_);
SDL_GetTextureSize(back_buffer_, &texture_width_, &texture_height_);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Inicializando shaders: ventana=%dx%d, textura=%.0fx%.0f",
window_width_, window_height_, texture_width_, texture_height_);
// Verificar que es OpenGL
const char* renderer_name = SDL_GetRendererName(renderer_);
if (!renderer_name || strncmp(renderer_name, "opengl", 6) != 0) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Renderer no es OpenGL: %s", renderer_name ? renderer_name : "unknown");
return false;
}
#ifndef __APPLE__
// Inicializar extensiones OpenGL en Windows/Linux
if (!initGLExtensions()) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Error al inicializar extensiones OpenGL");
return false;
}
#endif
// Limpiar shader anterior si existe
if (program_id_ != 0) {
glDeleteProgram(program_id_);
program_id_ = 0;
}
// Compilar shaders
GLuint vertex_shader = compileShader(vertex_source, GL_VERTEX_SHADER);
GLuint fragment_shader = compileShader(fragment_source, GL_FRAGMENT_SHADER);
if (vertex_shader == 0 || fragment_shader == 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Error al compilar shaders");
if (vertex_shader != 0) glDeleteShader(vertex_shader);
if (fragment_shader != 0) glDeleteShader(fragment_shader);
return false;
}
// Enlazar programa
program_id_ = linkProgram(vertex_shader, fragment_shader);
// Limpiar shaders (ya no necesarios tras el enlace)
glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader);
if (program_id_ == 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Error al crear programa de shaders");
return false;
}
// Crear geometría del quad
createQuadGeometry();
// Obtener ubicación del uniform TextureSize
glUseProgram(program_id_);
texture_size_location_ = glGetUniformLocation(program_id_, "TextureSize");
if (texture_size_location_ != -1) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Configurando TextureSize uniform: %.0fx%.0f",
texture_width_, texture_height_);
glUniform2f(texture_size_location_, texture_width_, texture_height_);
checkGLError("glUniform2f(TextureSize)");
} else {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Uniform 'TextureSize' no encontrado en shader");
}
glUseProgram(0);
is_initialized_ = true;
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"** OpenGL 3.3 Shader Backend inicializado correctamente");
return true;
}
void OpenGLShader::render() {
if (!is_initialized_ || program_id_ == 0) {
// Fallback: renderizado SDL normal
SDL_SetRenderDrawColor(renderer_, 0, 0, 0, 255);
SDL_SetRenderTarget(renderer_, nullptr);
SDL_RenderClear(renderer_);
SDL_RenderTexture(renderer_, back_buffer_, nullptr, nullptr);
SDL_RenderPresent(renderer_);
return;
}
// Obtener tamaño actual de ventana (puede haber cambiado)
int current_width, current_height;
SDL_GetWindowSize(window_, &current_width, &current_height);
// Guardar estados OpenGL
GLint old_program;
glGetIntegerv(GL_CURRENT_PROGRAM, &old_program);
GLint old_viewport[4];
glGetIntegerv(GL_VIEWPORT, old_viewport);
GLboolean was_texture_enabled = glIsEnabled(GL_TEXTURE_2D);
GLint old_texture;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &old_texture);
GLint old_vao;
glGetIntegerv(GL_VERTEX_ARRAY_BINDING, &old_vao);
// Preparar renderizado
SDL_SetRenderDrawColor(renderer_, 0, 0, 0, 255);
SDL_SetRenderTarget(renderer_, nullptr);
SDL_RenderClear(renderer_);
// Obtener y bindear textura
GLuint texture_id = getTextureID(back_buffer_);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texture_id);
checkGLError("glBindTexture");
// Usar nuestro programa
glUseProgram(program_id_);
checkGLError("glUseProgram");
// Configurar viewport (obtener tamaño lógico de SDL)
int logical_w, logical_h;
SDL_RendererLogicalPresentation mode;
SDL_GetRenderLogicalPresentation(renderer_, &logical_w, &logical_h, &mode);
if (logical_w == 0 || logical_h == 0) {
logical_w = current_width;
logical_h = current_height;
}
// Calcular viewport considerando aspect ratio
int viewport_x = 0, viewport_y = 0;
int viewport_w = current_width, viewport_h = current_height;
if (mode == SDL_LOGICAL_PRESENTATION_INTEGER_SCALE) {
int scale_x = current_width / logical_w;
int scale_y = current_height / logical_h;
int scale = (scale_x < scale_y) ? scale_x : scale_y;
if (scale < 1) scale = 1;
viewport_w = logical_w * scale;
viewport_h = logical_h * scale;
viewport_x = (current_width - viewport_w) / 2;
viewport_y = (current_height - viewport_h) / 2;
} else {
float window_aspect = static_cast<float>(current_width) / current_height;
float logical_aspect = static_cast<float>(logical_w) / logical_h;
if (window_aspect > logical_aspect) {
viewport_w = static_cast<int>(logical_aspect * current_height);
viewport_x = (current_width - viewport_w) / 2;
} else {
viewport_h = static_cast<int>(current_width / logical_aspect);
viewport_y = (current_height - viewport_h) / 2;
}
}
glViewport(viewport_x, viewport_y, viewport_w, viewport_h);
checkGLError("glViewport");
// Dibujar quad usando VAO
glBindVertexArray(vao_);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
checkGLError("glDrawElements");
// Presentar
SDL_GL_SwapWindow(window_);
// Restaurar estados OpenGL
glUseProgram(old_program);
glBindTexture(GL_TEXTURE_2D, old_texture);
if (!was_texture_enabled) {
glDisable(GL_TEXTURE_2D);
}
glBindVertexArray(old_vao);
glViewport(old_viewport[0], old_viewport[1], old_viewport[2], old_viewport[3]);
}
void OpenGLShader::setTextureSize(float width, float height) {
if (!is_initialized_ || program_id_ == 0) {
return;
}
texture_width_ = width;
texture_height_ = height;
GLint old_program;
glGetIntegerv(GL_CURRENT_PROGRAM, &old_program);
glUseProgram(program_id_);
if (texture_size_location_ != -1) {
glUniform2f(texture_size_location_, width, height);
checkGLError("glUniform2f(TextureSize)");
}
glUseProgram(old_program);
}
void OpenGLShader::cleanup() {
if (vao_ != 0) {
glDeleteVertexArrays(1, &vao_);
vao_ = 0;
}
if (vbo_ != 0) {
glDeleteBuffers(1, &vbo_);
vbo_ = 0;
}
if (ebo_ != 0) {
glDeleteBuffers(1, &ebo_);
ebo_ = 0;
}
if (program_id_ != 0) {
glDeleteProgram(program_id_);
program_id_ = 0;
}
is_initialized_ = false;
window_ = nullptr;
renderer_ = nullptr;
back_buffer_ = nullptr;
}
} // namespace Rendering

View File

@@ -0,0 +1,98 @@
#pragma once
#include "../shader_backend.h"
#ifdef __APPLE__
#include <OpenGL/gl3.h>
#else
#include <SDL3/SDL_opengl.h>
#endif
namespace Rendering {
/**
* @brief Backend de shaders usando OpenGL 3.3 Core Profile
*
* Implementa el renderizado de shaders usando APIs modernas de OpenGL:
* - VAO (Vertex Array Objects)
* - VBO (Vertex Buffer Objects)
* - Shaders GLSL #version 330 core
*/
class OpenGLShader : public ShaderBackend {
public:
OpenGLShader() = default;
~OpenGLShader() override;
bool init(SDL_Window* window,
SDL_Texture* texture,
const std::string& vertex_source,
const std::string& fragment_source) override;
void render() override;
void setTextureSize(float width, float height) override;
void cleanup() override;
bool isHardwareAccelerated() const override { return is_initialized_; }
private:
// Funciones auxiliares
bool initGLExtensions();
GLuint compileShader(const std::string& source, GLenum shader_type);
GLuint linkProgram(GLuint vertex_shader, GLuint fragment_shader);
void createQuadGeometry();
GLuint getTextureID(SDL_Texture* texture);
void checkGLError(const char* operation);
// Estado SDL
SDL_Window* window_ = nullptr;
SDL_Renderer* renderer_ = nullptr;
SDL_Texture* back_buffer_ = nullptr;
// Estado OpenGL
GLuint program_id_ = 0;
GLuint vao_ = 0; // Vertex Array Object
GLuint vbo_ = 0; // Vertex Buffer Object
GLuint ebo_ = 0; // Element Buffer Object
// Ubicaciones de uniforms
GLint texture_size_location_ = -1;
// Tamaños
int window_width_ = 0;
int window_height_ = 0;
float texture_width_ = 0.0f;
float texture_height_ = 0.0f;
// Estado
bool is_initialized_ = false;
#ifndef __APPLE__
// Punteros a funciones OpenGL en Windows/Linux
PFNGLCREATESHADERPROC glCreateShader = nullptr;
PFNGLSHADERSOURCEPROC glShaderSource = nullptr;
PFNGLCOMPILESHADERPROC glCompileShader = nullptr;
PFNGLGETSHADERIVPROC glGetShaderiv = nullptr;
PFNGLGETSHADERINFOLOGPROC glGetShaderInfoLog = nullptr;
PFNGLDELETESHADERPROC glDeleteShader = nullptr;
PFNGLATTACHSHADERPROC glAttachShader = nullptr;
PFNGLCREATEPROGRAMPROC glCreateProgram = nullptr;
PFNGLLINKPROGRAMPROC glLinkProgram = nullptr;
PFNGLVALIDATEPROGRAMPROC glValidateProgram = nullptr;
PFNGLGETPROGRAMIVPROC glGetProgramiv = nullptr;
PFNGLGETPROGRAMINFOLOGPROC glGetProgramInfoLog = nullptr;
PFNGLUSEPROGRAMPROC glUseProgram = nullptr;
PFNGLDELETEPROGRAMPROC glDeleteProgram = nullptr;
PFNGLGETUNIFORMLOCATIONPROC glGetUniformLocation = nullptr;
PFNGLUNIFORM2FPROC glUniform2f = nullptr;
PFNGLGENVERTEXARRAYSPROC glGenVertexArrays = nullptr;
PFNGLBINDVERTEXARRAYPROC glBindVertexArray = nullptr;
PFNGLDELETEVERTEXARRAYSPROC glDeleteVertexArrays = nullptr;
PFNGLGENBUFFERSPROC glGenBuffers = nullptr;
PFNGLBINDBUFFERPROC glBindBuffer = nullptr;
PFNGLBUFFERDATAPROC glBufferData = nullptr;
PFNGLDELETEBUFFERSPROC glDeleteBuffers = nullptr;
PFNGLVERTEXATTRIBPOINTERPROC glVertexAttribPointer = nullptr;
PFNGLENABLEVERTEXATTRIBARRAYPROC glEnableVertexAttribArray = nullptr;
#endif
};
} // namespace Rendering

View File

@@ -0,0 +1,55 @@
#pragma once
#include <SDL3/SDL.h>
#include <string>
namespace Rendering {
/**
* @brief Interfaz abstracta para backends de renderizado con shaders
*
* Esta interfaz define el contrato que todos los backends de shaders
* deben cumplir (OpenGL, Metal, Vulkan, etc.)
*/
class ShaderBackend {
public:
virtual ~ShaderBackend() = default;
/**
* @brief Inicializa el backend de shaders
* @param window Ventana SDL
* @param texture Textura de backbuffer a la que aplicar shaders
* @param vertex_source Código fuente del vertex shader
* @param fragment_source Código fuente del fragment shader
* @return true si la inicialización fue exitosa
*/
virtual bool init(SDL_Window* window,
SDL_Texture* texture,
const std::string& vertex_source,
const std::string& fragment_source) = 0;
/**
* @brief Renderiza la textura con los shaders aplicados
*/
virtual void render() = 0;
/**
* @brief Establece el tamaño de la textura como parámetro del shader
* @param width Ancho de la textura
* @param height Alto de la textura
*/
virtual void setTextureSize(float width, float height) = 0;
/**
* @brief Limpia y libera recursos del backend
*/
virtual void cleanup() = 0;
/**
* @brief Verifica si el backend está usando aceleración por hardware
* @return true si usa aceleración (OpenGL/Metal/Vulkan)
*/
virtual bool isHardwareAccelerated() const = 0;
};
} // namespace Rendering

View File

@@ -16,8 +16,8 @@ Scoreboard::Scoreboard(std::shared_ptr<ScoreboardData> data)
: item_surface_(Resource::get()->getSurface("items.gif")), : item_surface_(Resource::get()->getSurface("items.gif")),
data_(data), data_(data),
clock_(ClockData()) { clock_(ClockData()) {
const int SURFACE_WIDTH_ = options.game.width; const float SURFACE_WIDTH_ = options.game.width;
constexpr int SURFACE_HEIGHT_ = 6 * BLOCK; constexpr float SURFACE_HEIGHT_ = 6.0F * BLOCK;
// Reserva memoria para los objetos // Reserva memoria para los objetos
auto player_texture = Resource::get()->getSurface(options.cheats.alternate_skin == Cheat::CheatState::ENABLED ? "player2.gif" : "player.gif"); auto player_texture = Resource::get()->getSurface(options.cheats.alternate_skin == Cheat::CheatState::ENABLED ? "player2.gif" : "player.gif");

View File

@@ -9,14 +9,14 @@
#include <iterator> // Para istreambuf_iterator, operator== #include <iterator> // Para istreambuf_iterator, operator==
#include <string> // Para char_traits, string, operator+, operator== #include <string> // Para char_traits, string, operator+, operator==
#include "asset.h" // Para Asset, AssetType #include "asset.h" // Para Asset, AssetType
#include "external/jail_shader.h" // Para init, render #include "mouse.h" // Para updateCursorVisibility
#include "mouse.h" // Para updateCursorVisibility #include "options.h" // Para Options, options, OptionsVideo, Border
#include "options.h" // Para Options, options, OptionsVideo, Border #include "rendering/opengl/opengl_shader.h" // Para OpenGLShader
#include "resource.h" // Para Resource #include "resource.h" // Para Resource
#include "surface.h" // Para Surface, readPalFile #include "surface.h" // Para Surface, readPalFile
#include "text.h" // Para Text #include "text.h" // Para Text
#include "ui/notifier.h" // Para Notifier #include "ui/notifier.h" // Para Notifier
// [SINGLETON] // [SINGLETON]
Screen* Screen::screen_ = nullptr; Screen* Screen::screen_ = nullptr;
@@ -103,7 +103,6 @@ Screen::Screen(SDL_Window* window, SDL_Renderer* renderer)
// Muestra la ventana // Muestra la ventana
show(); show();
resetShaders();
// Extrae el nombre de las paletas desde su ruta // Extrae el nombre de las paletas desde su ruta
processPaletteList(); processPaletteList();
@@ -148,9 +147,6 @@ void Screen::setVideoMode(bool mode) {
SDL_SetWindowFullscreen(window_, options.video.fullscreen); SDL_SetWindowFullscreen(window_, options.video.fullscreen);
adjustWindowSize(); adjustWindowSize();
adjustRenderLogicalSize(); adjustRenderLogicalSize();
// Reinicia los shaders
resetShaders();
} }
// Camibia entre pantalla completa y ventana // Camibia entre pantalla completa y ventana
@@ -266,17 +262,6 @@ int Screen::getMaxZoom() {
return MAX_ZOOM; return MAX_ZOOM;
} }
// Reinicia los shaders
void Screen::resetShaders() {
if (options.video.shaders) {
const std::string GLSL_FILE = options.video.border.enabled ? "crtpi_240.glsl" : "crtpi_192.glsl";
std::ifstream f(Asset::get()->get(GLSL_FILE).c_str());
std::string source((std::istreambuf_iterator<char>(f)), std::istreambuf_iterator<char>());
shader::init(window_, shaders_texture_, source);
}
}
// Establece el renderizador para las surfaces // Establece el renderizador para las surfaces
void Screen::setRendererSurface(std::shared_ptr<Surface> surface) { void Screen::setRendererSurface(std::shared_ptr<Surface> surface) {
(surface) ? renderer_surface_ = std::make_shared<std::shared_ptr<Surface>>(surface) : renderer_surface_ = std::make_shared<std::shared_ptr<Surface>>(game_surface_); (surface) ? renderer_surface_ = std::make_shared<std::shared_ptr<Surface>>(surface) : renderer_surface_ = std::make_shared<std::shared_ptr<Surface>>(game_surface_);
@@ -341,11 +326,11 @@ void Screen::surfaceToTexture() {
void Screen::textureToRenderer() { void Screen::textureToRenderer() {
SDL_Texture* texture_to_render = options.video.border.enabled ? border_texture_ : game_texture_; SDL_Texture* texture_to_render = options.video.border.enabled ? border_texture_ : game_texture_;
if (options.video.shaders) { if (options.video.shaders && shader_backend_) {
SDL_SetRenderTarget(renderer_, shaders_texture_); SDL_SetRenderTarget(renderer_, shaders_texture_);
SDL_RenderTexture(renderer_, texture_to_render, nullptr, nullptr); SDL_RenderTexture(renderer_, texture_to_render, nullptr, nullptr);
SDL_SetRenderTarget(renderer_, nullptr); SDL_SetRenderTarget(renderer_, nullptr);
shader::render(); shader_backend_->render();
} else { } else {
SDL_SetRenderTarget(renderer_, nullptr); SDL_SetRenderTarget(renderer_, nullptr);
SDL_SetRenderDrawColor(renderer_, 0x00, 0x00, 0x00, 0xFF); SDL_SetRenderDrawColor(renderer_, 0x00, 0x00, 0x00, 0xFF);
@@ -439,4 +424,80 @@ void Screen::toggleIntegerScale() {
// Getters // Getters
SDL_Renderer* Screen::getRenderer() { return renderer_; } SDL_Renderer* Screen::getRenderer() { return renderer_; }
std::shared_ptr<Surface> Screen::getRendererSurface() { return (*renderer_surface_); } std::shared_ptr<Surface> Screen::getRendererSurface() { return (*renderer_surface_); }
std::shared_ptr<Surface> Screen::getBorderSurface() { return border_surface_; } std::shared_ptr<Surface> Screen::getBorderSurface() { return border_surface_; }
std::vector<uint8_t> loadData(const std::string& filepath) {
// Fallback a filesystem
std::ifstream file(filepath, std::ios::binary | std::ios::ate);
if (!file) {
return {};
}
std::streamsize fileSize = file.tellg();
file.seekg(0, std::ios::beg);
std::vector<uint8_t> data(fileSize);
if (!file.read(reinterpret_cast<char*>(data.data()), fileSize)) {
return {};
}
return data;
}
// Carga el contenido de los archivos GLSL
void Screen::loadShaders() {
if (vertex_shader_source_.empty()) {
// Detectar si necesitamos OpenGL ES (Raspberry Pi)
// Intentar cargar versión ES primero si existe
std::string VERTEX_FILE = "crtpi_vertex_es.glsl";
auto data = loadData(Asset::get()->get(VERTEX_FILE));
if (data.empty()) {
// Si no existe versión ES, usar versión Desktop
VERTEX_FILE = "crtpi_vertex.glsl";
data = loadData(Asset::get()->get(VERTEX_FILE));
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Usando shaders OpenGL Desktop 3.3");
} else {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Usando shaders OpenGL ES 3.0 (Raspberry Pi)");
}
if (!data.empty()) {
vertex_shader_source_ = std::string(data.begin(), data.end());
}
}
if (fragment_shader_source_.empty()) {
// Intentar cargar versión ES primero si existe
std::string FRAGMENT_FILE = "crtpi_fragment_es.glsl";
auto data = loadData(Asset::get()->get(FRAGMENT_FILE));
if (data.empty()) {
// Si no existe versión ES, usar versión Desktop
FRAGMENT_FILE = "crtpi_fragment.glsl";
data = loadData(Asset::get()->get(FRAGMENT_FILE));
}
if (!data.empty()) {
fragment_shader_source_ = std::string(data.begin(), data.end());
}
}
}
// Inicializa los shaders
void Screen::initShaders() {
#ifndef __APPLE__
if (options.video.shaders) {
loadShaders();
if (!shader_backend_) {
shader_backend_ = std::make_unique<Rendering::OpenGLShader>();
}
shader_backend_->init(window_, game_texture_, vertex_shader_source_, fragment_shader_source_);
}
#else
// En macOS, OpenGL está deprecated y rinde mal
// TODO: Implementar backend de Metal para shaders en macOS
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Shaders no disponibles en macOS (OpenGL deprecated). Usa Metal backend.");
#endif
}

View File

@@ -9,6 +9,9 @@
#include "utils.h" // Para Color #include "utils.h" // Para Color
struct Surface; struct Surface;
namespace Rendering {
class ShaderBackend;
}
// Tipos de filtro // Tipos de filtro
enum class ScreenFilter : Uint32 { enum class ScreenFilter : Uint32 {
@@ -62,6 +65,7 @@ class Screen {
std::shared_ptr<Surface> game_surface_; // Surface principal para manejar game_surface_data_ std::shared_ptr<Surface> game_surface_; // Surface principal para manejar game_surface_data_
std::shared_ptr<Surface> border_surface_; // Surface para pintar el el borde de la pantalla std::shared_ptr<Surface> border_surface_; // Surface para pintar el el borde de la pantalla
std::shared_ptr<std::shared_ptr<Surface>> renderer_surface_; // Puntero a la Surface que actua std::shared_ptr<std::shared_ptr<Surface>> renderer_surface_; // Puntero a la Surface que actua
std::unique_ptr<Rendering::ShaderBackend> shader_backend_; // Backend de shaders (OpenGL/Metal/Vulkan)
// Variables // Variables
int window_width_; // Ancho de la pantalla o ventana int window_width_; // Ancho de la pantalla o ventana
@@ -73,6 +77,8 @@ class Screen {
bool notifications_enabled_ = false; // indica si se muestran las notificaciones bool notifications_enabled_ = false; // indica si se muestran las notificaciones
FPS fps_; // Variable para gestionar los frames por segundo FPS fps_; // Variable para gestionar los frames por segundo
std::string info_resolution_; // Texto con la informacion de la pantalla std::string info_resolution_; // Texto con la informacion de la pantalla
std::string vertex_shader_source_; // Almacena el vertex shader
std::string fragment_shader_source_; // Almacena el fragment shader
#ifdef DEBUG #ifdef DEBUG
bool show_debug_info_ = false; // Indica si ha de mostrar/ocultar la información de la pantalla bool show_debug_info_ = false; // Indica si ha de mostrar/ocultar la información de la pantalla
@@ -89,9 +95,6 @@ class Screen {
// Ajusta el tamaño lógico del renderizador // Ajusta el tamaño lógico del renderizador
void adjustRenderLogicalSize(); void adjustRenderLogicalSize();
// Reinicia los shaders
void resetShaders();
// Extrae los nombres de las paletas // Extrae los nombres de las paletas
void processPaletteList(); void processPaletteList();
@@ -110,6 +113,9 @@ class Screen {
// Recrea la textura para los shaders // Recrea la textura para los shaders
void createShadersTexture(); void createShadersTexture();
void initShaders(); // Inicializa los shaders
void loadShaders(); // Carga el contenido del archivo GLSL
// Muestra información por pantalla // Muestra información por pantalla
void renderInfo(); void renderInfo();

View File

@@ -215,8 +215,8 @@ void Game::renderDebugInfo() {
// Comprueba los eventos // Comprueba los eventos
void Game::checkDebugEvents(const SDL_Event& event) { void Game::checkDebugEvents(const SDL_Event& event) {
if (event.type == SDL_KEYDOWN && event.key.repeat == 0) { if (event.type == SDL_EVENT_KEY_DOWN && event.key.repeat == 0) {
switch (event.key.keysym.scancode) { switch (event.key.key) {
case SDL_SCANCODE_G: case SDL_SCANCODE_G:
Debug::get()->toggleEnabled(); Debug::get()->toggleEnabled();
options.cheats.invincible = static_cast<Cheat::CheatState>(Debug::get()->getEnabled()); options.cheats.invincible = static_cast<Cheat::CheatState>(Debug::get()->getEnabled());
@@ -581,7 +581,7 @@ void Game::createRoomNameTexture() {
room_name_surface_ = std::make_shared<Surface>(options.game.width, text->getCharacterSize() * 2); room_name_surface_ = std::make_shared<Surface>(options.game.width, text->getCharacterSize() * 2);
// Establece el destino de la textura // Establece el destino de la textura
room_name_rect_ = {0, PLAY_AREA_HEIGHT, options.game.width, text->getCharacterSize() * 2}; room_name_rect_ = {0.0F, PLAY_AREA_HEIGHT, options.game.width, text->getCharacterSize() * 2.0F};
} }
// Hace sonar la música // Hace sonar la música

View File

@@ -22,8 +22,8 @@ Palette readPalFile(const std::string& file_path);
struct SurfaceData { struct SurfaceData {
std::shared_ptr<Uint8[]> data; // Usa std::shared_ptr para gestión automática std::shared_ptr<Uint8[]> data; // Usa std::shared_ptr para gestión automática
float width; // Ancho de la imagen float width; // Ancho de la imagen
float height; // Alto de la imagen float height; // Alto de la imagen
// Constructor por defecto // Constructor por defecto
SurfaceData() SurfaceData()
@@ -123,7 +123,7 @@ class Surface {
// Color transparente // Color transparente
Uint8 getTransparentColor() const { return transparent_color_; } Uint8 getTransparentColor() const { return transparent_color_; }
void setTransparentColor(Uint8 color = static_cast<Uint8>(PaletteColor::TRANSPARENT)) { transparent_color_ = color; } void setTransparentColor(Uint8 color = 255) { transparent_color_ = color; }
// Paleta // Paleta
void setPalette(const std::array<Uint32, 256>& palette) { palette_ = palette; } void setPalette(const std::array<Uint32, 256>& palette) { palette_ = palette; }