Implementar figura HELIX (espiral helicoidal 3D) - Tecla E
- Nueva clase HelixShape con ecuaciones paramétricas - Distribución uniforme en 3 vueltas completas - Rotación en eje Y + animación de fase vertical - Pitch ajustado a 0.25 para evitar clipping (180px altura total) - Compatible con física spring-damper y z-sorting - Escalable con Numpad +/- 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
59
source/shapes/helix_shape.cpp
Normal file
59
source/shapes/helix_shape.cpp
Normal file
@@ -0,0 +1,59 @@
|
||||
#include "helix_shape.h"
|
||||
#include "../defines.h"
|
||||
#include <cmath>
|
||||
|
||||
void HelixShape::generatePoints(int num_points, float screen_width, float screen_height) {
|
||||
num_points_ = num_points;
|
||||
radius_ = screen_height * HELIX_RADIUS_FACTOR;
|
||||
pitch_ = screen_height * HELIX_PITCH_FACTOR;
|
||||
total_height_ = pitch_ * HELIX_NUM_TURNS;
|
||||
// Las posiciones 3D se calculan en getPoint3D() usando ecuaciones paramétricas
|
||||
}
|
||||
|
||||
void HelixShape::update(float delta_time, float screen_width, float screen_height) {
|
||||
// Recalcular dimensiones por si cambió resolución (F4)
|
||||
radius_ = screen_height * HELIX_RADIUS_FACTOR;
|
||||
pitch_ = screen_height * HELIX_PITCH_FACTOR;
|
||||
total_height_ = pitch_ * HELIX_NUM_TURNS;
|
||||
|
||||
// Actualizar rotación en eje Y (horizontal)
|
||||
angle_y_ += HELIX_ROTATION_SPEED_Y * delta_time;
|
||||
|
||||
// Actualizar fase para animación vertical (efecto "subiendo/bajando")
|
||||
phase_offset_ += HELIX_PHASE_SPEED * delta_time;
|
||||
}
|
||||
|
||||
void HelixShape::getPoint3D(int index, float& x, float& y, float& z) const {
|
||||
// Parámetro t: distribuir uniformemente de 0 a (2π * num_turns)
|
||||
float t = (static_cast<float>(index) / static_cast<float>(num_points_)) * (2.0f * PI * HELIX_NUM_TURNS);
|
||||
|
||||
// Ecuaciones paramétricas de hélice
|
||||
// x = radius * cos(t)
|
||||
// y = pitch * (t / 2π) + phase_offset (altura proporcional al ángulo)
|
||||
// z = radius * sin(t)
|
||||
float x_base = radius_ * cosf(t);
|
||||
float y_base = (pitch_ * (t / (2.0f * PI))) + (sinf(phase_offset_) * pitch_ * 0.3f);
|
||||
float z_base = radius_ * sinf(t);
|
||||
|
||||
// Centrar verticalmente: restar mitad de altura total
|
||||
y_base -= total_height_ * 0.5f;
|
||||
|
||||
// Aplicar rotación en eje Y (horizontal)
|
||||
float cos_y = cosf(angle_y_);
|
||||
float sin_y = sinf(angle_y_);
|
||||
float x_rot = x_base * cos_y - z_base * sin_y;
|
||||
float z_rot = x_base * sin_y + z_base * cos_y;
|
||||
|
||||
// Retornar coordenadas finales
|
||||
x = x_rot;
|
||||
y = y_base;
|
||||
z = z_rot;
|
||||
}
|
||||
|
||||
float HelixShape::getScaleFactor(float screen_height) const {
|
||||
// Factor de escala para física: proporcional a la dimensión mayor (altura total)
|
||||
// Altura base = 180px para 3 vueltas con pitch=0.25 en 240px de altura (180 = 240 * 0.25 * 3)
|
||||
const float BASE_HEIGHT = 180.0f;
|
||||
float current_height = screen_height * HELIX_PITCH_FACTOR * HELIX_NUM_TURNS;
|
||||
return current_height / BASE_HEIGHT;
|
||||
}
|
||||
Reference in New Issue
Block a user