Files
vibe3_physics/source/app_logo.cpp
Sergio Valor d30a4fd440 debug: Agregar logging detallado a FADE_OUT de AppLogo
- Log de timer_, delta_time, progress en cada frame
- Log de alpha1/alpha2 calculados
- Log de valores de animación por tipo (ZOOM/ELASTIC/SPIRAL/BOUNCE)
- Log de ease_t1 en ROTATE_SPIRAL para diagnosticar desincronización
- Log cuando FADE_OUT se completa

Propósito: Diagnosticar por qué el fade parece instantáneo
y desincronizado con la animación (serie en lugar de paralelo).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-18 19:26:14 +02:00

710 lines
30 KiB
C++

#include "app_logo.h"
#include <SDL3/SDL_render.h> // for SDL_DestroyTexture, SDL_RenderGeometry, SDL_SetTextureAlphaMod
#include <cmath> // for powf, sinf, cosf
#include <cstdlib> // for free()
#include <iostream> // for std::cout
#include "logo_scaler.h" // for LogoScaler
#include "defines.h" // for APPLOGO_HEIGHT_PERCENT, getResourcesDirectory
// ============================================================================
// Destructor - Liberar las 4 texturas SDL
// ============================================================================
AppLogo::~AppLogo() {
if (logo1_base_texture_) {
SDL_DestroyTexture(logo1_base_texture_);
logo1_base_texture_ = nullptr;
}
if (logo1_native_texture_) {
SDL_DestroyTexture(logo1_native_texture_);
logo1_native_texture_ = nullptr;
}
if (logo2_base_texture_) {
SDL_DestroyTexture(logo2_base_texture_);
logo2_base_texture_ = nullptr;
}
if (logo2_native_texture_) {
SDL_DestroyTexture(logo2_native_texture_);
logo2_native_texture_ = nullptr;
}
}
// ============================================================================
// Inicialización - Pre-escalar logos a 2 resoluciones (base y nativa)
// ============================================================================
bool AppLogo::initialize(SDL_Renderer* renderer, int screen_width, int screen_height) {
renderer_ = renderer;
base_screen_width_ = screen_width;
base_screen_height_ = screen_height;
screen_width_ = screen_width;
screen_height_ = screen_height;
std::string resources_dir = getResourcesDirectory();
// ========================================================================
// 1. Detectar resolución nativa del monitor
// ========================================================================
if (!LogoScaler::detectNativeResolution(native_screen_width_, native_screen_height_)) {
std::cout << "No se pudo detectar resolución nativa, usando solo base" << std::endl;
// Fallback: usar resolución base como nativa
native_screen_width_ = screen_width;
native_screen_height_ = screen_height;
}
// ========================================================================
// 2. Calcular alturas finales para ambas resoluciones
// ========================================================================
int logo_base_target_height = static_cast<int>(base_screen_height_ * APPLOGO_HEIGHT_PERCENT);
int logo_native_target_height = static_cast<int>(native_screen_height_ * APPLOGO_HEIGHT_PERCENT);
std::cout << "Pre-escalando logos:" << std::endl;
std::cout << " Base: " << base_screen_width_ << "x" << base_screen_height_
<< " (altura logo: " << logo_base_target_height << "px)" << std::endl;
std::cout << " Nativa: " << native_screen_width_ << "x" << native_screen_height_
<< " (altura logo: " << logo_native_target_height << "px)" << std::endl;
// ========================================================================
// 3. Cargar y escalar LOGO1 (data/logo/logo.png) a 2 versiones
// ========================================================================
std::string logo1_path = resources_dir + "/data/logo/logo.png";
// 3a. Versión BASE de logo1
unsigned char* logo1_base_data = LogoScaler::loadAndScale(
logo1_path,
0, // width calculado automáticamente por aspect ratio
logo_base_target_height,
logo1_base_width_,
logo1_base_height_
);
if (logo1_base_data == nullptr) {
std::cout << "Error: No se pudo escalar logo1 (base)" << std::endl;
return false;
}
logo1_base_texture_ = LogoScaler::createTextureFromBuffer(
renderer, logo1_base_data, logo1_base_width_, logo1_base_height_
);
free(logo1_base_data); // Liberar buffer temporal
if (logo1_base_texture_ == nullptr) {
std::cout << "Error: No se pudo crear textura logo1 (base)" << std::endl;
return false;
}
// Habilitar alpha blending
SDL_SetTextureBlendMode(logo1_base_texture_, SDL_BLENDMODE_BLEND);
// 3b. Versión NATIVA de logo1
unsigned char* logo1_native_data = LogoScaler::loadAndScale(
logo1_path,
0, // width calculado automáticamente
logo_native_target_height,
logo1_native_width_,
logo1_native_height_
);
if (logo1_native_data == nullptr) {
std::cout << "Error: No se pudo escalar logo1 (nativa)" << std::endl;
return false;
}
logo1_native_texture_ = LogoScaler::createTextureFromBuffer(
renderer, logo1_native_data, logo1_native_width_, logo1_native_height_
);
free(logo1_native_data);
if (logo1_native_texture_ == nullptr) {
std::cout << "Error: No se pudo crear textura logo1 (nativa)" << std::endl;
return false;
}
SDL_SetTextureBlendMode(logo1_native_texture_, SDL_BLENDMODE_BLEND);
// ========================================================================
// 4. Cargar y escalar LOGO2 (data/logo/logo2.png) a 2 versiones
// ========================================================================
std::string logo2_path = resources_dir + "/data/logo/logo2.png";
// 4a. Versión BASE de logo2
unsigned char* logo2_base_data = LogoScaler::loadAndScale(
logo2_path,
0,
logo_base_target_height,
logo2_base_width_,
logo2_base_height_
);
if (logo2_base_data == nullptr) {
std::cout << "Error: No se pudo escalar logo2 (base)" << std::endl;
return false;
}
logo2_base_texture_ = LogoScaler::createTextureFromBuffer(
renderer, logo2_base_data, logo2_base_width_, logo2_base_height_
);
free(logo2_base_data);
if (logo2_base_texture_ == nullptr) {
std::cout << "Error: No se pudo crear textura logo2 (base)" << std::endl;
return false;
}
SDL_SetTextureBlendMode(logo2_base_texture_, SDL_BLENDMODE_BLEND);
// 4b. Versión NATIVA de logo2
unsigned char* logo2_native_data = LogoScaler::loadAndScale(
logo2_path,
0,
logo_native_target_height,
logo2_native_width_,
logo2_native_height_
);
if (logo2_native_data == nullptr) {
std::cout << "Error: No se pudo escalar logo2 (nativa)" << std::endl;
return false;
}
logo2_native_texture_ = LogoScaler::createTextureFromBuffer(
renderer, logo2_native_data, logo2_native_width_, logo2_native_height_
);
free(logo2_native_data);
if (logo2_native_texture_ == nullptr) {
std::cout << "Error: No se pudo crear textura logo2 (nativa)" << std::endl;
return false;
}
SDL_SetTextureBlendMode(logo2_native_texture_, SDL_BLENDMODE_BLEND);
// ========================================================================
// 5. Inicialmente usar texturas BASE (la resolución de inicio)
// ========================================================================
logo1_current_texture_ = logo1_base_texture_;
logo1_current_width_ = logo1_base_width_;
logo1_current_height_ = logo1_base_height_;
logo2_current_texture_ = logo2_base_texture_;
logo2_current_width_ = logo2_base_width_;
logo2_current_height_ = logo2_base_height_;
std::cout << "Logos pre-escalados exitosamente (4 texturas creadas)" << std::endl;
return true;
}
void AppLogo::update(float delta_time, AppMode current_mode) {
// Si estamos en SANDBOX, resetear y no hacer nada (logo desactivado)
if (current_mode == AppMode::SANDBOX) {
state_ = AppLogoState::HIDDEN;
timer_ = 0.0f;
logo1_alpha_ = 0;
logo2_alpha_ = 0;
return;
}
// Máquina de estados con fade in/out
timer_ += delta_time;
switch (state_) {
case AppLogoState::HIDDEN:
// Esperando el intervalo de espera
if (timer_ >= APPLOGO_DISPLAY_INTERVAL) {
state_ = AppLogoState::FADE_IN;
timer_ = 0.0f;
logo1_alpha_ = 0;
logo2_alpha_ = 0;
// Elegir UNA animación aleatoria (misma para ambos logos, misma entrada y salida)
current_animation_ = getRandomAnimation();
}
break;
case AppLogoState::FADE_IN:
// Fade in: alpha de 0 a 255, con Logo 2 retrasado 0.25s
{
// Calcular progreso de cada logo (Logo 2 con retraso)
float fade_progress_logo1 = timer_ / APPLOGO_ANIMATION_DURATION;
float fade_progress_logo2 = std::max(0.0f, (timer_ - APPLOGO_LOGO2_DELAY) / APPLOGO_ANIMATION_DURATION);
// Verificar si fade in completado (cuando logo2 también termina)
if (fade_progress_logo2 >= 1.0f) {
// Fade in completado para ambos logos
state_ = AppLogoState::VISIBLE;
timer_ = 0.0f;
logo1_alpha_ = 255;
logo2_alpha_ = 255;
// Resetear variables de ambos logos
logo1_scale_ = 1.0f;
logo1_squash_y_ = 1.0f;
logo1_stretch_x_ = 1.0f;
logo1_rotation_ = 0.0f;
logo2_scale_ = 1.0f;
logo2_squash_y_ = 1.0f;
logo2_stretch_x_ = 1.0f;
logo2_rotation_ = 0.0f;
} else {
// Interpolar alpha con retraso de forma LINEAL (sin easing)
logo1_alpha_ = static_cast<int>(std::min(1.0f, fade_progress_logo1) * 255.0f);
logo2_alpha_ = static_cast<int>(std::min(1.0f, fade_progress_logo2) * 255.0f);
// ================================================================
// Aplicar MISMA animación (current_animation_) a ambos logos
// con sus respectivos progresos
// ================================================================
switch (current_animation_) {
case AppLogoAnimationType::ZOOM_ONLY:
logo1_scale_ = 1.2f - (std::min(1.0f, fade_progress_logo1) * 0.2f);
logo1_squash_y_ = 1.0f;
logo1_stretch_x_ = 1.0f;
logo1_rotation_ = 0.0f;
logo2_scale_ = 1.2f - (std::min(1.0f, fade_progress_logo2) * 0.2f);
logo2_squash_y_ = 1.0f;
logo2_stretch_x_ = 1.0f;
logo2_rotation_ = 0.0f;
break;
case AppLogoAnimationType::ELASTIC_STICK:
{
float prog1 = std::min(1.0f, fade_progress_logo1);
float elastic_t1 = easeOutElastic(prog1);
logo1_scale_ = 1.2f - (elastic_t1 * 0.2f);
float squash_t1 = easeOutBack(prog1);
logo1_squash_y_ = 0.6f + (squash_t1 * 0.4f);
logo1_stretch_x_ = 1.0f + (1.0f - logo1_squash_y_) * 0.5f;
logo1_rotation_ = 0.0f;
float prog2 = std::min(1.0f, fade_progress_logo2);
float elastic_t2 = easeOutElastic(prog2);
logo2_scale_ = 1.2f - (elastic_t2 * 0.2f);
float squash_t2 = easeOutBack(prog2);
logo2_squash_y_ = 0.6f + (squash_t2 * 0.4f);
logo2_stretch_x_ = 1.0f + (1.0f - logo2_squash_y_) * 0.5f;
logo2_rotation_ = 0.0f;
}
break;
case AppLogoAnimationType::ROTATE_SPIRAL:
{
float prog1 = std::min(1.0f, fade_progress_logo1);
float ease_t1 = easeInOutQuad(prog1);
logo1_scale_ = 0.3f + (ease_t1 * 0.7f);
logo1_rotation_ = (1.0f - prog1) * 6.28f;
logo1_squash_y_ = 1.0f;
logo1_stretch_x_ = 1.0f;
float prog2 = std::min(1.0f, fade_progress_logo2);
float ease_t2 = easeInOutQuad(prog2);
logo2_scale_ = 0.3f + (ease_t2 * 0.7f);
logo2_rotation_ = (1.0f - prog2) * 6.28f;
logo2_squash_y_ = 1.0f;
logo2_stretch_x_ = 1.0f;
}
break;
case AppLogoAnimationType::BOUNCE_SQUASH:
{
float prog1 = std::min(1.0f, fade_progress_logo1);
float bounce_t1 = easeOutBounce(prog1);
logo1_scale_ = 1.0f;
float squash_amount1 = (1.0f - bounce_t1) * 0.3f;
logo1_squash_y_ = 1.0f - squash_amount1;
logo1_stretch_x_ = 1.0f + squash_amount1 * 0.5f;
logo1_rotation_ = 0.0f;
float prog2 = std::min(1.0f, fade_progress_logo2);
float bounce_t2 = easeOutBounce(prog2);
logo2_scale_ = 1.0f;
float squash_amount2 = (1.0f - bounce_t2) * 0.3f;
logo2_squash_y_ = 1.0f - squash_amount2;
logo2_stretch_x_ = 1.0f + squash_amount2 * 0.5f;
logo2_rotation_ = 0.0f;
}
break;
}
}
}
break;
case AppLogoState::VISIBLE:
// Logo completamente visible, esperando duración
if (timer_ >= APPLOGO_DISPLAY_DURATION) {
state_ = AppLogoState::FADE_OUT;
timer_ = 0.0f;
logo1_alpha_ = 255;
logo2_alpha_ = 255;
// NO elegir nueva animación - reutilizar current_animation_ (simetría entrada/salida)
}
break;
case AppLogoState::FADE_OUT:
// Fade out: alpha de 255 a 0, con Logo 2 retrasado 0.25s (misma animación que entrada)
{
// Calcular progreso de cada logo (Logo 2 con retraso)
float fade_progress_logo1 = timer_ / APPLOGO_ANIMATION_DURATION;
float fade_progress_logo2 = std::max(0.0f, (timer_ - APPLOGO_LOGO2_DELAY) / APPLOGO_ANIMATION_DURATION);
// LOG: Estado completo de FADE_OUT para diagnóstico
std::cout << "[FADE_OUT] timer=" << timer_
<< " | delta_time=" << delta_time
<< " | prog1=" << fade_progress_logo1
<< " | prog2=" << fade_progress_logo2 << std::endl;
// Verificar si fade out completado (cuando logo2 también termina)
if (fade_progress_logo2 >= 1.0f) {
std::cout << " [FADE_OUT COMPLETADO - Cambiando a HIDDEN]" << std::endl;
// Fade out completado, volver a HIDDEN
state_ = AppLogoState::HIDDEN;
timer_ = 0.0f;
logo1_alpha_ = 0;
logo2_alpha_ = 0;
// Resetear variables de ambos logos
logo1_scale_ = 1.0f;
logo1_squash_y_ = 1.0f;
logo1_stretch_x_ = 1.0f;
logo1_rotation_ = 0.0f;
logo2_scale_ = 1.0f;
logo2_squash_y_ = 1.0f;
logo2_stretch_x_ = 1.0f;
logo2_rotation_ = 0.0f;
} else {
// Interpolar alpha con retraso de forma LINEAL (255 → 0, sin easing)
logo1_alpha_ = static_cast<int>((1.0f - std::min(1.0f, fade_progress_logo1)) * 255.0f);
logo2_alpha_ = static_cast<int>((1.0f - std::min(1.0f, fade_progress_logo2)) * 255.0f);
std::cout << " → alpha1=" << logo1_alpha_
<< " | alpha2=" << logo2_alpha_ << std::endl;
// ================================================================
// Aplicar MISMA animación (current_animation_) de forma invertida
// ================================================================
switch (current_animation_) {
case AppLogoAnimationType::ZOOM_ONLY:
logo1_scale_ = 1.0f + (std::min(1.0f, fade_progress_logo1) * 0.2f);
logo1_squash_y_ = 1.0f;
logo1_stretch_x_ = 1.0f;
logo1_rotation_ = 0.0f;
logo2_scale_ = 1.0f + (std::min(1.0f, fade_progress_logo2) * 0.2f);
logo2_squash_y_ = 1.0f;
logo2_stretch_x_ = 1.0f;
logo2_rotation_ = 0.0f;
std::cout << " → ZOOM: scale1=" << logo1_scale_
<< " | scale2=" << logo2_scale_ << std::endl;
break;
case AppLogoAnimationType::ELASTIC_STICK:
{
float prog1 = std::min(1.0f, fade_progress_logo1);
logo1_scale_ = 1.0f + (prog1 * prog1 * 0.2f);
logo1_squash_y_ = 1.0f + (prog1 * 0.3f);
logo1_stretch_x_ = 1.0f - (prog1 * 0.2f);
logo1_rotation_ = prog1 * 0.1f;
float prog2 = std::min(1.0f, fade_progress_logo2);
logo2_scale_ = 1.0f + (prog2 * prog2 * 0.2f);
logo2_squash_y_ = 1.0f + (prog2 * 0.3f);
logo2_stretch_x_ = 1.0f - (prog2 * 0.2f);
logo2_rotation_ = prog2 * 0.1f;
std::cout << " → ELASTIC: scale1=" << logo1_scale_
<< " | squash1=" << logo1_squash_y_
<< " | stretch1=" << logo1_stretch_x_ << std::endl;
}
break;
case AppLogoAnimationType::ROTATE_SPIRAL:
{
float prog1 = std::min(1.0f, fade_progress_logo1);
float ease_t1 = easeInOutQuad(prog1);
logo1_scale_ = 1.0f - (ease_t1 * 0.7f);
logo1_rotation_ = prog1 * 6.28f;
logo1_squash_y_ = 1.0f;
logo1_stretch_x_ = 1.0f;
float prog2 = std::min(1.0f, fade_progress_logo2);
float ease_t2 = easeInOutQuad(prog2);
logo2_scale_ = 1.0f - (ease_t2 * 0.7f);
logo2_rotation_ = prog2 * 6.28f;
logo2_squash_y_ = 1.0f;
logo2_stretch_x_ = 1.0f;
std::cout << " → SPIRAL: scale1=" << logo1_scale_
<< " | rotation1=" << logo1_rotation_
<< " | ease_t1=" << ease_t1 << std::endl;
}
break;
case AppLogoAnimationType::BOUNCE_SQUASH:
{
float prog1 = std::min(1.0f, fade_progress_logo1);
if (prog1 < 0.2f) {
float squash_t = prog1 / 0.2f;
logo1_squash_y_ = 1.0f - (squash_t * 0.3f);
logo1_stretch_x_ = 1.0f + (squash_t * 0.2f);
} else {
float jump_t = (prog1 - 0.2f) / 0.8f;
logo1_squash_y_ = 0.7f + (jump_t * 0.5f);
logo1_stretch_x_ = 1.2f - (jump_t * 0.2f);
}
logo1_scale_ = 1.0f + (prog1 * 0.3f);
logo1_rotation_ = 0.0f;
float prog2 = std::min(1.0f, fade_progress_logo2);
if (prog2 < 0.2f) {
float squash_t = prog2 / 0.2f;
logo2_squash_y_ = 1.0f - (squash_t * 0.3f);
logo2_stretch_x_ = 1.0f + (squash_t * 0.2f);
} else {
float jump_t = (prog2 - 0.2f) / 0.8f;
logo2_squash_y_ = 0.7f + (jump_t * 0.5f);
logo2_stretch_x_ = 1.2f - (jump_t * 0.2f);
}
logo2_scale_ = 1.0f + (prog2 * 0.3f);
logo2_rotation_ = 0.0f;
std::cout << " → BOUNCE: scale1=" << logo1_scale_
<< " | squash1=" << logo1_squash_y_ << std::endl;
}
break;
}
}
}
break;
}
}
void AppLogo::render() {
// Renderizar si NO está en estado HIDDEN (incluye FADE_IN, VISIBLE, FADE_OUT)
if (state_ != AppLogoState::HIDDEN) {
// Renderizar LOGO1 primero (fondo), luego LOGO2 (encima)
renderWithGeometry(1);
renderWithGeometry(2);
}
}
void AppLogo::updateScreenSize(int screen_width, int screen_height) {
screen_width_ = screen_width;
screen_height_ = screen_height;
// ========================================================================
// Detectar si coincide con resolución nativa o base, cambiar texturas
// ========================================================================
bool is_native = (screen_width == native_screen_width_ && screen_height == native_screen_height_);
if (is_native) {
// Cambiar a texturas nativas (F4 fullscreen)
logo1_current_texture_ = logo1_native_texture_;
logo1_current_width_ = logo1_native_width_;
logo1_current_height_ = logo1_native_height_;
logo2_current_texture_ = logo2_native_texture_;
logo2_current_width_ = logo2_native_width_;
logo2_current_height_ = logo2_native_height_;
std::cout << "AppLogo: Cambiado a texturas NATIVAS" << std::endl;
} else {
// Cambiar a texturas base (ventana redimensionable)
logo1_current_texture_ = logo1_base_texture_;
logo1_current_width_ = logo1_base_width_;
logo1_current_height_ = logo1_base_height_;
logo2_current_texture_ = logo2_base_texture_;
logo2_current_width_ = logo2_base_width_;
logo2_current_height_ = logo2_base_height_;
std::cout << "AppLogo: Cambiado a texturas BASE" << std::endl;
}
// Nota: No es necesario recalcular escalas porque las texturas están pre-escaladas
// al tamaño exacto de pantalla. Solo renderizamos al 100% (o con deformaciones de animación).
}
// ============================================================================
// Funciones de easing para animaciones
// ============================================================================
float AppLogo::easeOutElastic(float t) {
// Elastic easing out: bounce elástico al final
const float c4 = (2.0f * 3.14159f) / 3.0f;
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
return powf(2.0f, -10.0f * t) * sinf((t * 10.0f - 0.75f) * c4) + 1.0f;
}
float AppLogo::easeOutBack(float t) {
// Back easing out: overshoot suave al final
const float c1 = 1.70158f;
const float c3 = c1 + 1.0f;
return 1.0f + c3 * powf(t - 1.0f, 3.0f) + c1 * powf(t - 1.0f, 2.0f);
}
float AppLogo::easeOutBounce(float t) {
// Bounce easing out: rebotes decrecientes (para BOUNCE_SQUASH)
const float n1 = 7.5625f;
const float d1 = 2.75f;
if (t < 1.0f / d1) {
return n1 * t * t;
} else if (t < 2.0f / d1) {
t -= 1.5f / d1;
return n1 * t * t + 0.75f;
} else if (t < 2.5f / d1) {
t -= 2.25f / d1;
return n1 * t * t + 0.9375f;
} else {
t -= 2.625f / d1;
return n1 * t * t + 0.984375f;
}
}
float AppLogo::easeInOutQuad(float t) {
// Quadratic easing in/out: aceleración suave (para ROTATE_SPIRAL)
if (t < 0.5f) {
return 2.0f * t * t;
} else {
return 1.0f - powf(-2.0f * t + 2.0f, 2.0f) / 2.0f;
}
}
// ============================================================================
// Función auxiliar para aleatorización
// ============================================================================
AppLogoAnimationType AppLogo::getRandomAnimation() {
// Generar número aleatorio entre 0 y 3 (4 tipos de animación)
int random_value = rand() % 4;
switch (random_value) {
case 0:
return AppLogoAnimationType::ZOOM_ONLY;
case 1:
return AppLogoAnimationType::ELASTIC_STICK;
case 2:
return AppLogoAnimationType::ROTATE_SPIRAL;
case 3:
default:
return AppLogoAnimationType::BOUNCE_SQUASH;
}
}
// ============================================================================
// Renderizado con geometría (para todos los logos, con deformaciones)
// ============================================================================
void AppLogo::renderWithGeometry(int logo_index) {
if (!renderer_) return;
// Seleccionar variables según el logo_index (1 = logo1, 2 = logo2)
SDL_Texture* texture;
int base_width, base_height;
float scale, squash_y, stretch_x, rotation;
if (logo_index == 1) {
if (!logo1_current_texture_) return;
texture = logo1_current_texture_;
base_width = logo1_current_width_;
base_height = logo1_current_height_;
scale = logo1_scale_;
squash_y = logo1_squash_y_;
stretch_x = logo1_stretch_x_;
rotation = logo1_rotation_;
} else if (logo_index == 2) {
if (!logo2_current_texture_) return;
texture = logo2_current_texture_;
base_width = logo2_current_width_;
base_height = logo2_current_height_;
scale = logo2_scale_;
squash_y = logo2_squash_y_;
stretch_x = logo2_stretch_x_;
rotation = logo2_rotation_;
} else {
return; // Índice inválido
}
// Aplicar alpha específico de cada logo (con retraso para logo2)
int alpha = (logo_index == 1) ? logo1_alpha_ : logo2_alpha_;
SDL_SetTextureAlphaMod(texture, static_cast<Uint8>(alpha));
// Calcular tamaño con escala y deformaciones aplicadas
// (base_width y base_height ya están pre-escalados al tamaño correcto de pantalla)
float width = base_width * scale * stretch_x;
float height = base_height * scale * squash_y;
// Calcular padding desde bordes derecho e inferior
float padding_x = screen_width_ * APPLOGO_PADDING_PERCENT;
float padding_y = screen_height_ * APPLOGO_PADDING_PERCENT;
// Calcular esquina del logo (anclado a esquina inferior derecha con padding)
float corner_x = screen_width_ - width - padding_x;
float corner_y = screen_height_ - height - padding_y;
// Centro del logo (para rotación) = esquina + mitad del tamaño
float center_x = corner_x + (width / 2.0f);
float center_y = corner_y + (height / 2.0f);
// Pre-calcular seno y coseno de rotación
float cos_rot = cosf(rotation);
float sin_rot = sinf(rotation);
// Crear 4 vértices del quad (centrado en center_x, center_y)
SDL_Vertex vertices[4];
// Offset desde el centro
float half_w = width / 2.0f;
float half_h = height / 2.0f;
// Vértice superior izquierdo (rotado)
{
float local_x = -half_w;
float local_y = -half_h;
float rotated_x = local_x * cos_rot - local_y * sin_rot;
float rotated_y = local_x * sin_rot + local_y * cos_rot;
vertices[0].position = {center_x + rotated_x, center_y + rotated_y};
vertices[0].tex_coord = {0.0f, 0.0f};
vertices[0].color = {1.0f, 1.0f, 1.0f, 1.0f}; // Color blanco (textura se modula con alpha)
}
// Vértice superior derecho (rotado)
{
float local_x = half_w;
float local_y = -half_h;
float rotated_x = local_x * cos_rot - local_y * sin_rot;
float rotated_y = local_x * sin_rot + local_y * cos_rot;
vertices[1].position = {center_x + rotated_x, center_y + rotated_y};
vertices[1].tex_coord = {1.0f, 0.0f};
vertices[1].color = {1.0f, 1.0f, 1.0f, 1.0f};
}
// Vértice inferior derecho (rotado)
{
float local_x = half_w;
float local_y = half_h;
float rotated_x = local_x * cos_rot - local_y * sin_rot;
float rotated_y = local_x * sin_rot + local_y * cos_rot;
vertices[2].position = {center_x + rotated_x, center_y + rotated_y};
vertices[2].tex_coord = {1.0f, 1.0f};
vertices[2].color = {1.0f, 1.0f, 1.0f, 1.0f};
}
// Vértice inferior izquierdo (rotado)
{
float local_x = -half_w;
float local_y = half_h;
float rotated_x = local_x * cos_rot - local_y * sin_rot;
float rotated_y = local_x * sin_rot + local_y * cos_rot;
vertices[3].position = {center_x + rotated_x, center_y + rotated_y};
vertices[3].tex_coord = {0.0f, 1.0f};
vertices[3].color = {1.0f, 1.0f, 1.0f, 1.0f};
}
// Índices para 2 triángulos
int indices[6] = {0, 1, 2, 2, 3, 0};
// Renderizar con la textura del logo correspondiente
SDL_RenderGeometry(renderer_, texture, vertices, 4, indices, 6);
}