Files
coffee_crisis_arcade_edition/source/utils.cpp
Sergio 41e3fd1d8d iwyu
clang-tidy
clang-format
2025-08-10 22:01:18 +02:00

395 lines
12 KiB
C++

#define _USE_MATH_DEFINES
#include "utils.h"
#include <SDL3/SDL.h> // Para SDL_RenderPoint, SDL_FRect, SDL_FPoint, SDL_CloseIO, SDL_IOFromFile, SDL_LogCategory, SDL_LogError, SDL_LogInfo, SDL_ReadIO, SDL_Renderer
#include <algorithm> // Para clamp, find_if_not, find, transform
#include <cctype> // Para tolower, isspace
#include <cmath> // Para pow, sin, M_PI, cos, sqrt
#include <compare> // Para operator<, __synth3way_t
#include <filesystem> // Para path
#include <stdexcept> // Para runtime_error
#include <string> // Para basic_string, allocator, string, operator==, operator+, char_traits
#include "lang.h" // Para getText
// Variables
Overrides overrides = Overrides();
// Calcula el cuadrado de la distancia entre dos puntos
auto distanceSquared(int x1, int y1, int x2, int y2) -> double {
const int DELTA_X = x2 - x1;
const int DELTA_Y = y2 - y1;
return DELTA_X * DELTA_X + DELTA_Y * DELTA_Y;
}
// Obtiene el punto de colisión entre dos circulos
auto getCollisionPoint(const Circle &a, const Circle &b) -> SDL_FPoint {
float dx = b.x - a.x;
float dy = b.y - a.y;
float dist = std::sqrt(dx * dx + dy * dy);
// Normaliza el vector
float nx = dx / dist;
float ny = dy / dist;
// Punto en el borde del círculo A hacia B
SDL_FPoint contact;
contact.x = a.x + nx * a.r;
contact.y = a.y + ny * a.r;
return contact;
}
// Detector de colisiones entre dos circulos
auto checkCollision(const Circle &a, const Circle &b) -> bool {
// Calcula el radio total al cuadrado
int total_radius_squared = (a.r + b.r) * (a.r + b.r);
// Comprueba si la distancia entre los centros de los círculos es inferior a la suma de sus radios
return distanceSquared(a.x, a.y, b.x, b.y) < total_radius_squared;
}
// Detector de colisiones entre un circulo y un rectangulo
auto checkCollision(const Circle &a, const SDL_FRect &b) -> bool {
// Encuentra el punto más cercano en el rectángulo
float c_x = std::clamp(static_cast<float>(a.x), b.x, b.x + b.w);
float c_y = std::clamp(static_cast<float>(a.y), b.y, b.y + b.h);
// Si el punto más cercano está dentro del círculo
return distanceSquared(static_cast<float>(a.x), static_cast<float>(a.y), c_x, c_y) < static_cast<float>(a.r) * a.r;
}
// Detector de colisiones entre dos rectangulos
auto checkCollision(const SDL_FRect &a, const SDL_FRect &b) -> bool {
const int LEFT_A = a.x;
const int RIGHT_A = a.x + a.w;
const int TOP_A = a.y;
const int BOTTOM_A = a.y + a.h;
const int LEFT_B = b.x;
const int RIGHT_B = b.x + b.w;
const int TOP_B = b.y;
const int BOTTOM_B = b.y + b.h;
if (BOTTOM_A <= TOP_B) {
return false;
}
if (TOP_A >= BOTTOM_B) {
return false;
}
if (RIGHT_A <= LEFT_B) {
return false;
}
if (LEFT_A >= RIGHT_B) {
return false;
}
return true;
}
// Detector de colisiones entre un punto y un rectangulo
auto checkCollision(const SDL_FPoint &p, const SDL_FRect &r) -> bool {
if (p.x < r.x || p.x > r.x + r.w) {
return false;
}
if (p.y < r.y || p.y > r.y + r.h) {
return false;
}
return true;
}
// Convierte una cadena en un valor booleano
auto stringToBool(const std::string &str) -> bool {
std::string s = trim(toLower(str));
return (s == "true" || s == "1" || s == "yes" || s == "on");
}
// Convierte un valor booleano en una cadena
auto boolToString(bool value) -> std::string {
return value ? "true" : "false";
}
// Convierte un valor booleano en una cadena "on" o "off"
auto boolToOnOff(bool value) -> std::string {
return value ? Lang::getText("[NOTIFICATIONS] 06") : Lang::getText("[NOTIFICATIONS] 07");
}
// Convierte una cadena a minusculas
auto toLower(const std::string &str) -> std::string {
std::string result = str;
std::transform(result.begin(), result.end(), result.begin(), [](unsigned char c) { return std::tolower(c); });
return result;
}
// Dibuja un circulo
void drawCircle(SDL_Renderer *renderer, int32_t center_x, int32_t center_y, int32_t radius) {
const int32_t DIAMETER = (radius * 2);
int32_t x = (radius - 1);
int32_t y = 0;
int32_t tx = 1;
int32_t ty = 1;
int32_t error = (tx - DIAMETER);
while (x >= y) {
// Each of the following renders an octant of the circle
SDL_RenderPoint(renderer, center_x + x, center_y - y);
SDL_RenderPoint(renderer, center_x + x, center_y + y);
SDL_RenderPoint(renderer, center_x - x, center_y - y);
SDL_RenderPoint(renderer, center_x - x, center_y + y);
SDL_RenderPoint(renderer, center_x + y, center_y - x);
SDL_RenderPoint(renderer, center_x + y, center_y + x);
SDL_RenderPoint(renderer, center_x - y, center_y - x);
SDL_RenderPoint(renderer, center_x - y, center_y + x);
if (error <= 0) {
++y;
error += ty;
ty += 2;
}
if (error > 0) {
--x;
tx += 2;
error += (tx - DIAMETER);
}
}
}
// Quita los espacioes en un string
auto trim(const std::string &str) -> std::string {
auto start = std::find_if_not(str.begin(), str.end(), ::isspace);
auto end = std::find_if_not(str.rbegin(), str.rend(), ::isspace).base();
return (start < end ? std::string(start, end) : std::string());
}
// Función de suavizado
auto easeOutQuint(double time) -> double {
return 1 - std::pow(1 - time, 5);
}
// Función de suavizado
auto easeInQuint(double time) -> double {
return pow(time, 5);
}
// Función de suavizado
auto easeInOutQuint(double time) -> double {
return time < 0.5 ? 16 * pow(time, 5) : 1 - pow(-2 * time + 2, 5) / 2;
}
// Función de suavizado
auto easeInQuad(double time) -> double {
return time * time;
}
// Función de suavizado
auto easeOutQuad(double time) -> double {
return 1 - (1 - time) * (1 - time);
}
// Función de suavizado
auto easeInOutSine(double time) -> double {
return -0.5 * (std::cos(M_PI * time) - 1);
}
// Función de suavizado
auto easeInOut(double time) -> double {
return time < 0.5 ? 2 * time * time : -1 + (4 - 2 * time) * time;
}
// Función de suavizado (easeInOutExpo)
auto easeInOutExpo(double time) -> double {
if (time == 0) {
return 0;
}
if (time == 1) {
return 1;
}
if (time < 0.5) {
return pow(2, 20 * time - 10) / 2;
}
return (2 - pow(2, -20 * time + 10)) / 2;
}
// Función de suavizado (easeInElastic)
auto easeInElastic(double time) -> double {
if (time == 0) {
return 0;
}
if (time == 1) {
return 1;
}
const double C4 = (2 * M_PI) / 3;
return -pow(2, 10 * time - 10) * sin((time * 10 - 10.75) * C4);
}
// Función de suavizado
auto easeOutBounce(double time) -> double {
if (time < 1 / 2.75) {
return 7.5625 * time * time;
}
if (time < 2 / 2.75) {
time -= 1.5 / 2.75;
return 7.5625 * time * time + 0.75;
}
if (time < 2.5 / 2.75) {
time -= 2.25 / 2.75;
return 7.5625 * time * time + 0.9375;
}
time -= 2.625 / 2.75;
return 7.5625 * time * time + 0.984375;
}
// Función de suavizado (easeOutElastic)
auto easeOutElastic(double time) -> double {
if (time == 0) {
return 0;
}
if (time == 1) {
return 1;
}
const double C4 = (2 * M_PI) / 3; // Constante para controlar la elasticidad
return pow(2, -10 * time) * sin((time * 10 - 0.75) * C4) + 1;
}
// Ease Out Expo - Muy suave al final (más dramático)
auto easeOutExpo(double time) -> double {
return time == 1.0F ? 1.0F : 1.0F - pow(2.0F, -10.0F * time);
}
// Ease In Expo - Arranque muy gradual
auto easeInExpo(double time) -> double {
return time == 0.0F ? 0.0F : pow(2.0F, 10.0F * (time - 1.0F));
}
// Ease Out Back - Con un pequeño "rebote"
auto easeOutBack(double time) -> double {
const double C1 = 1.70158F;
const double C3 = C1 + 1.0F;
return 1.0F + C3 * pow(time - 1.0F, 3.0F) + C1 * pow(time - 1.0F, 2.0F);
}
// Ease Out Cubic - Desaceleración suave al final
auto easeOutCubic(double time) -> double {
return 1.0F - pow(1.0F - time, 3.0F);
}
// Ease In Cubic - Aceleración gradual
auto easeInCubic(double time) -> double {
return time * time * time;
}
// Comprueba si una vector contiene una cadena
auto stringInVector(const std::vector<std::string> &vec, const std::string &str) -> bool {
return std::find(vec.begin(), vec.end(), str) != vec.end();
}
// Imprime por pantalla una línea de texto de tamaño fijo rellena con puntos
void printWithDots(const std::string &text1, const std::string &text2, const std::string &text3) {
constexpr size_t TOTAL_WIDTH = 52;
// Calcula el ancho del campo para text2 restando la longitud de text1 y text3
size_t field_width = TOTAL_WIDTH > (text1.size() + text3.size())
? TOTAL_WIDTH - text1.size() - text3.size()
: 0;
// Prepara el bloque a imprimir a partir de text2
std::string field_text;
if (text2.size() < field_width) {
// Si text2 es más corto, lo rellenamos a la derecha con puntos
field_text = text2 + std::string(field_width - text2.size(), '.');
} else {
// Si es demasiado largo, lo cortamos
field_text = text2.substr(0, field_width);
}
// Concatena todo
std::string formatted_text = text1 + field_text + text3;
// Imprime la línea formateada usando SDL_LogInfo
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "%s", formatted_text.c_str());
}
// Carga el fichero de datos para la demo
auto loadDemoDataFromFile(const std::string &file_path) -> DemoData {
DemoData dd;
// Indicador de éxito en la carga
auto *file = SDL_IOFromFile(file_path.c_str(), "r+b");
if (file == nullptr) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Error: Fichero no encontrado %s", file_path.c_str());
throw std::runtime_error("Fichero no encontrado: " + file_path);
}
printWithDots("DemoData : ", getFileName(file_path), "[ LOADED ]");
// Lee todos los datos del fichero y los deja en el destino
for (int i = 0; i < TOTAL_DEMO_DATA; ++i) {
DemoKeys dk = DemoKeys();
SDL_ReadIO(file, &dk, sizeof(DemoKeys));
dd.push_back(dk);
}
// Cierra el fichero
SDL_CloseIO(file);
return dd;
}
#ifdef RECORDING
// Guarda el fichero de datos para la demo
bool saveDemoFile(const std::string &file_path, const DemoData &dd) {
auto success = true;
auto file = SDL_IOFromFile(file_path.c_str(), "w+b");
if (file) {
// Guarda los datos
for (const auto &data : dd) {
if (SDL_RWwrite(file, &data, sizeof(DemoKeys), 1) != 1) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Error al escribir el fichero %s", getFileName(file_path).c_str());
success = false;
break;
}
}
if (success) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Writing file %s", getFileName(file_path).c_str());
}
// Cierra el fichero
SDL_CloseIO(file);
} else {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Error: Unable to save %s file! %s", getFileName(file_path).c_str(), SDL_GetError());
success = false;
}
return success;
}
#endif // RECORDING
// Obtiene el nombre de un fichero a partir de una ruta completa
auto getFileName(const std::string &path) -> std::string {
return std::filesystem::path(path).filename().string();
}
// Obtiene la ruta eliminando el nombre del fichero
auto getPath(const std::string &full_path) -> std::string {
std::filesystem::path path(full_path);
return path.parent_path().string();
}
// Trunca un string y le añade puntos suspensivos
auto truncateWithEllipsis(const std::string &input, size_t length) -> std::string {
if (input.size() <= length) {
return input;
}
if (length <= 3) {
return std::string(length, '.');
}
return input.substr(0, length) + "...";
}