Files
jaildoctors_dilemma/source/utils/easing_functions.hpp
2025-11-19 20:21:45 +01:00

252 lines
6.2 KiB
C++

/**
* @file easing_functions.hpp
* @brief Colección de funciones de suavizado (easing) para animaciones
*
* Todas las funciones toman un parámetro t (0.0 a 1.0) que representa
* el progreso de la animación y retornan el valor suavizado.
*
* Convenciones:
* - In: Aceleración (slow -> fast)
* - Out: Desaceleración (fast -> slow)
* - InOut: Aceleración + Desaceleración (slow -> fast -> slow)
*/
#pragma once
#include <cmath>
#include <numbers>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
namespace Easing {
// LINEAR
inline auto linear(float t) -> float {
return t;
}
// QUAD (Cuadrática: t^2)
inline auto quadIn(float t) -> float {
return t * t;
}
inline auto quadOut(float t) -> float {
return t * (2.0F - t);
}
inline auto quadInOut(float t) -> float {
if (t < 0.5F) {
return 2.0F * t * t;
}
return -1.0F + ((4.0F - 2.0F * t) * t);
}
// CUBIC (Cúbica: t^3)
inline auto cubicIn(float t) -> float {
return t * t * t;
}
inline auto cubicOut(float t) -> float {
const float F = t - 1.0F;
return (F * F * F) + 1.0F;
}
inline auto cubicInOut(float t) -> float {
if (t < 0.5F) {
return 4.0F * t * t * t;
}
const float F = ((2.0F * t) - 2.0F);
return (0.5F * F * F * F) + 1.0F;
}
// QUART (Cuártica: t^4)
inline auto quartIn(float t) -> float {
return t * t * t * t;
}
inline auto quartOut(float t) -> float {
const float F = t - 1.0F;
return 1.0F - (F * F * F * F);
}
inline auto quartInOut(float t) -> float {
if (t < 0.5F) {
return 8.0F * t * t * t * t;
}
const float F = t - 1.0F;
return 1.0F - (8.0F * F * F * F * F);
}
// QUINT (Quíntica: t^5)
inline auto quintIn(float t) -> float {
return t * t * t * t * t;
}
inline auto quintOut(float t) -> float {
const float F = t - 1.0F;
return (F * F * F * F * F) + 1.0F;
}
inline auto quintInOut(float t) -> float {
if (t < 0.5F) {
return 16.0F * t * t * t * t * t;
}
const float F = ((2.0F * t) - 2.0F);
return (0.5F * F * F * F * F * F) + 1.0F;
}
// SINE (Sinusoidal)
inline auto sineIn(float t) -> float {
return 1.0F - std::cos(t * std::numbers::pi_v<float> * 0.5F);
}
inline auto sineOut(float t) -> float {
return std::sin(t * std::numbers::pi_v<float> * 0.5F);
}
inline auto sineInOut(float t) -> float {
return 0.5F * (1.0F - std::cos(std::numbers::pi_v<float> * t));
}
// EXPO (Exponencial)
inline auto expoIn(float t) -> float {
if (t == 0.0F) {
return 0.0F;
}
return std::pow(2.0F, 10.0F * (t - 1.0F));
}
inline auto expoOut(float t) -> float {
if (t == 1.0F) {
return 1.0F;
}
return 1.0F - std::pow(2.0F, -10.0F * t);
}
inline auto expoInOut(float t) -> float {
if (t == 0.0F || t == 1.0F) {
return t;
}
if (t < 0.5F) {
return 0.5F * std::pow(2.0F, (20.0F * t) - 10.0F);
}
return 0.5F * (2.0F - std::pow(2.0F, (-20.0F * t) + 10.0F));
}
// CIRC (Circular)
inline auto circIn(float t) -> float {
return 1.0F - std::sqrt(1.0F - (t * t));
}
inline auto circOut(float t) -> float {
const float F = t - 1.0F;
return std::sqrt(1.0F - (F * F));
}
inline auto circInOut(float t) -> float {
if (t < 0.5F) {
return 0.5F * (1.0F - std::sqrt(1.0F - (4.0F * t * t)));
}
const float F = (2.0F * t) - 2.0F;
return 0.5F * (std::sqrt(1.0F - (F * F)) + 1.0F);
}
// BACK (Overshoot - retrocede antes de avanzar)
inline auto backIn(float t, float overshoot = 1.70158F) -> float {
return t * t * ((overshoot + 1.0F) * t - overshoot);
}
inline auto backOut(float t, float overshoot = 1.70158F) -> float {
const float F = t - 1.0F;
return (F * F * ((overshoot + 1.0F) * F + overshoot)) + 1.0F;
}
inline auto backInOut(float t, float overshoot = 1.70158F) -> float {
const float S = overshoot * 1.525F;
if (t < 0.5F) {
const float F = 2.0F * t;
return 0.5F * (F * F * ((S + 1.0F) * F - S));
}
const float F = (2.0F * t) - 2.0F;
return 0.5F * (F * F * ((S + 1.0F) * F + S) + 2.0F);
}
// ELASTIC (Oscilación elástica - efecto de resorte)
inline auto elasticIn(float t, float amplitude = 1.0F, float period = 0.3F) -> float {
if (t == 0.0F || t == 1.0F) {
return t;
}
const float S = period / (2.0F * std::numbers::pi_v<float>)*std::asin(1.0F / amplitude);
const float F = t - 1.0F;
return -(amplitude * std::pow(2.0F, 10.0F * F) *
std::sin((F - S) * (2.0F * std::numbers::pi_v<float>) / period));
}
inline auto elasticOut(float t, float amplitude = 1.0F, float period = 0.3F) -> float {
if (t == 0.0F || t == 1.0F) {
return t;
}
const float S = period / (2.0F * std::numbers::pi_v<float>)*std::asin(1.0F / amplitude);
return (amplitude * std::pow(2.0F, -10.0F * t) *
std::sin((t - S) * (2.0F * std::numbers::pi_v<float>) / period)) +
1.0F;
}
inline auto elasticInOut(float t, float amplitude = 1.0F, float period = 0.3F) -> float {
if (t == 0.0F || t == 1.0F) {
return t;
}
const float S = period / (2.0F * std::numbers::pi_v<float>)*std::asin(1.0F / amplitude);
if (t < 0.5F) {
const float F = (2.0F * t) - 1.0F;
return -0.5F * (amplitude * std::pow(2.0F, 10.0F * F) * std::sin((F - S) * (2.0F * std::numbers::pi_v<float>) / period));
}
const float F = (2.0F * t) - 1.0F;
return (0.5F * amplitude * std::pow(2.0F, -10.0F * F) *
std::sin((F - S) * (2.0F * std::numbers::pi_v<float>) / period)) +
1.0F;
}
// BOUNCE (Rebote - simula física de rebote)
inline auto bounceOut(float t) -> float {
const float N1 = 7.5625F;
const float D1 = 2.75F;
if (t < 1.0F / D1) {
return N1 * t * t;
}
if (t < 2.0F / D1) {
const float F = t - (1.5F / D1);
return (N1 * F * F) + 0.75F;
}
if (t < 2.5F / D1) {
const float F = t - (2.25F / D1);
return (N1 * F * F) + 0.9375F;
}
const float F = t - (2.625F / D1);
return (N1 * F * F) + 0.984375F;
}
inline auto bounceIn(float t) -> float {
return 1.0F - bounceOut(1.0F - t);
}
inline auto bounceInOut(float t) -> float {
if (t < 0.5F) {
return 0.5F * bounceIn(2.0F * t);
}
return (0.5F * bounceOut((2.0F * t) - 1.0F)) + 0.5F;
}
} // namespace Easing