Incrementar constantes de damping para lograr amortiguamiento crítico
y eliminar oscilaciones durante la convergencia a la esfera RotoBall.
## Cambios
**defines.h - Nuevos valores:**
- `ROTOBALL_DAMPING_BASE`: 15.0 → 35.0 (+133%)
- Amortiguamiento crítico calculado: c ≈ 2*√(k*m) = 2*√(300*1) ≈ 34.64
- `ROTOBALL_DAMPING_NEAR`: 50.0 → 80.0 (+60%)
- Absorción rápida cuando están cerca del punto
## Problema Resuelto
**Antes (subdamped):**
- Las pelotas oscilaban varias veces antes de estabilizarse
- Sobrepasaban el punto destino repetidamente
- Convergencia lenta con "rebotes" visuales
**Ahora (critically damped):**
- Las pelotas convergen directamente sin oscilar
- Se "pegan" suavemente a la esfera
- Absorción rápida y visualmente limpia
## Teoría
Sistema masa-resorte-amortiguador:
- Subdamped (c < 2√km): Oscila antes de estabilizar
- Critically damped (c = 2√km): Converge rápido sin oscilar
- Overdamped (c > 2√km): Converge muy lento
Valores ajustados para estar en el punto crítico, logrando
la convergencia más rápida posible sin oscilación.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Reemplazar interpolación lineal artificial por sistema de fuerzas físicamente
realista usando Ley de Hooke con amortiguación variable.
## Cambios Principales
### Sistema de Física Implementado
**Fuerza de Resorte (Hooke's Law):**
```cpp
F_spring = k * (target - position)
F_damping = c * velocity
F_total = F_spring - F_damping
acceleration = F_total / mass
```
**Constantes (defines.h):**
- `ROTOBALL_SPRING_K = 300.0f`: Rigidez del resorte
- `ROTOBALL_DAMPING_BASE = 15.0f`: Amortiguación lejos del punto
- `ROTOBALL_DAMPING_NEAR = 50.0f`: Amortiguación cerca (estabilización)
- `ROTOBALL_NEAR_THRESHOLD = 5.0f`: Distancia considerada "cerca"
- `ROTOBALL_MAX_FORCE = 1000.0f`: Límite de seguridad
### Nuevas Funciones (Ball class)
- `enableRotoBallAttraction(bool)`: Activa/desactiva atracción física
- `applyRotoBallForce(target_x, target_y, deltaTime)`: Aplica fuerza de resorte
### Comportamiento Físico
**Al entrar (PHYSICS → ROTOBALL):**
1. Pelotas mantienen velocidad actual (vx, vy)
2. Fuerza de atracción las acelera hacia puntos en esfera rotante
3. Amortiguación variable evita oscilaciones infinitas
4. Convergen al punto con aceleración natural
**Durante RotoBall:**
- Punto destino rota constantemente
- Fuerza se recalcula cada frame hacia posición rotada
- Pelotas "persiguen" su punto móvil
- Efecto: Convergencia orgánica con ligera oscilación
**Al salir (ROTOBALL → PHYSICS):**
1. Atracción se desactiva
2. Pelotas conservan velocidad tangencial actual
3. Gravedad vuelve a aplicarse
4. Caen con la inercia que traían de la esfera
### Archivos Modificados
- `defines.h`: 5 nuevas constantes físicas
- `ball.h/cpp`: Sistema de resorte completo
- `engine.cpp`: Enable/disable atracción en toggle, updateRotoBall() usa física
- `CLAUDE.md`: Documentación técnica completa
## Ventajas del Sistema
✅ Física realista con conservación de momento
✅ Transición orgánica (no artificial)
✅ Inercia preservada entrada/salida
✅ Amortiguación automática (no oscila infinito)
✅ Constantes ajustables para tuning
✅ Performance: O(1) por pelota
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Añadido modo alternativo de simulación que transforma las pelotas en una
esfera 3D rotante proyectada en 2D, inspirado en efectos clásicos de demoscene.
## Características Principales
- **Algoritmo Fibonacci Sphere**: Distribución uniforme de puntos en esfera 3D
- **Rotación dual**: Matrices de rotación en ejes X e Y simultáneos
- **Profundidad Z simulada**: Color modulation según distancia (oscuro=lejos, brillante=cerca)
- **Transición suave**: Interpolación de 1.5s desde física a esfera
- **Sin sprites adicionales**: Usa SDL_SetTextureColorMod para profundidad
- **Performance optimizado**: >60 FPS con 100,000 pelotas
## Implementación Técnica
### Nuevos Archivos/Cambios:
- `defines.h`: Enum SimulationMode + constantes RotoBall (radio, velocidades, brillo)
- `ball.h/cpp`: Soporte 3D (pos_3d, target_2d, depth_brightness, setters)
- `engine.h/cpp`: Lógica completa RotoBall (generate, update, toggle)
- `generateRotoBallSphere()`: Fibonacci sphere algorithm
- `updateRotoBall()`: Rotación 3D + proyección ortográfica
- `toggleRotoBallMode()`: Cambio entre PHYSICS/ROTOBALL
- `README.md`: Documentación completa del modo
- `CLAUDE.md`: Detalles técnicos y algoritmos
## Parámetros Configurables (defines.h)
```cpp
ROTOBALL_RADIUS = 80.0f; // Radio de la esfera
ROTOBALL_ROTATION_SPEED_Y = 1.5f; // Velocidad rotación eje Y (rad/s)
ROTOBALL_ROTATION_SPEED_X = 0.8f; // Velocidad rotación eje X (rad/s)
ROTOBALL_TRANSITION_TIME = 1.5f; // Tiempo de transición (segundos)
ROTOBALL_MIN_BRIGHTNESS = 50; // Brillo mínimo fondo (0-255)
ROTOBALL_MAX_BRIGHTNESS = 255; // Brillo máximo frente (0-255)
```
## Uso
- **Tecla C**: Alternar entre modo física y modo RotoBall
- Compatible con todos los temas de colores
- Funciona con 1-100,000 pelotas
- Debug display muestra "MODE PHYSICS" o "MODE ROTOBALL"
## Performance
- Batch rendering: Una sola llamada SDL_RenderGeometry
- Fibonacci sphere recalculada por frame (O(n) predecible)
- Color mod CPU-side sin overhead GPU
- Delta time independiente del framerate
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
- Añadido nuevo tema RGB con fondo blanco puro y colores matemáticos
- Actualizado README.md con controles actuales y nuevas características
- Reorganizada documentación de controles por categorías
- Corregida información obsoleta (resolución, temas, problemas)
- Añadido control KP_5 para selección directa del tema RGB
- Mejorada visibilidad del texto adaptando colores por tema
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
- Corregir coeficiente base: ahora TODAS las pelotas tienen el mismo (0.75)
- Añadir constantes configurables en defines.h:
* BASE_BOUNCE_COEFFICIENT = 0.75f (igual para todas)
* BOUNCE_VARIATION_PERCENT = 0.05f (±5% por rebote)
* LATERAL_LOSS_PERCENT = 0.02f (±2% pérdida lateral)
- Implementar funciones generateBounceVariation() y generateLateralLoss()
- Aplicar variación aleatoria en cada rebote individual:
* Superficie de gravedad: rebote con ±5% variación
* Otras superficies: pérdida lateral 0-2%
- Añadir pérdida lateral perpendicular en todos los rebotes
- Actualizar debug display para mostrar coeficiente LOSS
Efecto: Pelotas idénticas divergen gradualmente por variaciones microscópicas
acumulativas, eliminando sincronización de forma natural y realista.
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
- Añadir enum GravityDirection (UP/DOWN/LEFT/RIGHT) en defines.h
- Modificar Ball class para soportar gravedad multi-direccional
- Reescribir Ball::update() con lógica direccional completa
- Cambiar on_floor_ por on_surface_ (más genérico)
- Implementar detección de superficie según dirección de gravedad
- Añadir controles de teclado con teclas de cursor
- Actualizar debug display para mostrar dirección actual
- Aplicar fricción correctamente según superficie activa
Controles nuevos:
- ↑/↓/←/→: Cambiar dirección de gravedad
- H: Toggle debug display (incluye nueva info de gravedad)
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>