- Nueva clase WaveGridShape con ecuaciones de onda 2D - Grid adaptativo según número de pelotas (1-N puntos) - Ecuación: z = A*sin(kx*x + phase)*cos(ky*y + phase) - Rotación lenta en Y + animación de fase rápida - Compatible con física spring-damper y z-sorting - Escalable con Numpad +/- 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
94 lines
3.2 KiB
C++
94 lines
3.2 KiB
C++
#include "wave_grid_shape.h"
|
|
#include "../defines.h"
|
|
#include <cmath>
|
|
|
|
void WaveGridShape::generatePoints(int num_points, float screen_width, float screen_height) {
|
|
num_points_ = num_points;
|
|
grid_size_ = screen_height * WAVE_GRID_SIZE_FACTOR;
|
|
amplitude_ = screen_height * WAVE_GRID_AMPLITUDE;
|
|
|
|
// Calcular grid cuadrado aproximado basado en número de puntos
|
|
// Queremos grid_cols * grid_rows ≈ num_points
|
|
grid_cols_ = static_cast<int>(sqrtf(static_cast<float>(num_points)));
|
|
grid_rows_ = grid_cols_;
|
|
|
|
// Ajustar para que grid_cols * grid_rows no exceda num_points
|
|
while (grid_cols_ * grid_rows_ > num_points && grid_rows_ > 1) {
|
|
grid_rows_--;
|
|
}
|
|
|
|
// Si tenemos menos puntos que celdas, ajustar columnas también
|
|
if (grid_cols_ * grid_rows_ > num_points) {
|
|
grid_cols_ = num_points / grid_rows_;
|
|
}
|
|
|
|
// Casos especiales para pocos puntos
|
|
if (num_points < 4) {
|
|
grid_cols_ = num_points;
|
|
grid_rows_ = 1;
|
|
}
|
|
}
|
|
|
|
void WaveGridShape::update(float delta_time, float screen_width, float screen_height) {
|
|
// Recalcular dimensiones por si cambió resolución (F4)
|
|
grid_size_ = screen_height * WAVE_GRID_SIZE_FACTOR;
|
|
amplitude_ = screen_height * WAVE_GRID_AMPLITUDE;
|
|
|
|
// Actualizar rotación en eje Y (horizontal)
|
|
angle_y_ += WAVE_GRID_ROTATION_SPEED_Y * delta_time;
|
|
|
|
// Actualizar fase de las ondas (animación)
|
|
phase_ += WAVE_GRID_PHASE_SPEED * delta_time;
|
|
}
|
|
|
|
void WaveGridShape::getPoint3D(int index, float& x, float& y, float& z) const {
|
|
// Convertir índice lineal a coordenadas 2D del grid
|
|
int col = index % grid_cols_;
|
|
int row = index / grid_cols_;
|
|
|
|
// Si el índice está fuera del grid válido, colocar en origen
|
|
if (row >= grid_rows_) {
|
|
x = 0.0f;
|
|
y = 0.0f;
|
|
z = 0.0f;
|
|
return;
|
|
}
|
|
|
|
// Normalizar coordenadas del grid a rango [-1, 1]
|
|
float u = (static_cast<float>(col) / static_cast<float>(grid_cols_ - 1)) * 2.0f - 1.0f;
|
|
float v = (static_cast<float>(row) / static_cast<float>(grid_rows_ - 1)) * 2.0f - 1.0f;
|
|
|
|
// Casos especiales para grids de 1 columna/fila
|
|
if (grid_cols_ == 1) u = 0.0f;
|
|
if (grid_rows_ == 1) v = 0.0f;
|
|
|
|
// Posición base en el grid (escalada por tamaño)
|
|
float x_base = u * grid_size_;
|
|
float y_base = v * grid_size_;
|
|
|
|
// Calcular Z usando función de onda 2D
|
|
// z = amplitude * sin(frequency * x + phase) * cos(frequency * y + phase)
|
|
float kx = WAVE_GRID_FREQUENCY * PI; // Frecuencia en X
|
|
float ky = WAVE_GRID_FREQUENCY * PI; // Frecuencia en Y
|
|
float z_base = amplitude_ * sinf(kx * u + phase_) * cosf(ky * v + phase_);
|
|
|
|
// Aplicar rotación en eje Y (horizontal)
|
|
float cos_y = cosf(angle_y_);
|
|
float sin_y = sinf(angle_y_);
|
|
float x_rot = x_base * cos_y - z_base * sin_y;
|
|
float z_rot = x_base * sin_y + z_base * cos_y;
|
|
|
|
// Retornar coordenadas finales
|
|
x = x_rot;
|
|
y = y_base;
|
|
z = z_rot;
|
|
}
|
|
|
|
float WaveGridShape::getScaleFactor(float screen_height) const {
|
|
// Factor de escala para física: proporcional al tamaño del grid
|
|
// Grid base = 84px (0.35 * 240px en resolución 320x240)
|
|
const float BASE_SIZE = 84.0f;
|
|
float current_size = screen_height * WAVE_GRID_SIZE_FACTOR;
|
|
return current_size / BASE_SIZE;
|
|
}
|